$\frac{1904}{\text { wi }}$

 CATALOGUE

 CATALOGUE}

率

MACHINERY

AND TOOLS.
PROVIDENCE, R. I., U. S. A.

MANUFACTURERS OF
Milling Machines,
Grinding Machines, automatic Gear Cutting Machines, Screw Machines, Cutters.
Accurate Test Tools, MACHINISTS' TOOLS.

This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally accessible.

VFV

Digtread by Google
snoy

Digitized by GOOgle
$i \cdots \cdots \cdots+\cdots$ i
i
i
i i

$\frac{1904}{\text { wi }}$

 CATALOGUE

 CATALOGUE}

率

MACHINERY

AND TOOLS.
PROVIDENCE, R. I., U. S. A.

MANUFACTURERS OF
Milling Machines,
Grinding Machines, automatic Gear Cutting Machines, Screw Machines, Cutters.
Accurate Test Tools, MACHINISTS' TOOLS.

$$
\begin{aligned}
& t \\
& \text { - W い }
\end{aligned}
$$

COPYRIGHT

1904
By Brown d Sharpe Mfg. Co.

INDEX.

Page.
222
ccessories, Pump
438, 439
438, 439
Acme Thread Gauges
Acme Thread Gauges
440
440
Adjustable Swivel Vise 77
Agents for Standard Gears, Addresses of 302
American Standard Wire Gauge 442
Angle Cutters, Double 247
Angular Cutters 246
Annealing and Case Hardening Furnaces. 210-213
Application of Improved Universal Bevel Protractor 425
Apprenticed Machinists, Hand Book for 309
Arbors for Automatic Gear Cutting Machines 135
Arbors for Face Milling Cutters with Inserted Teeth 52
Arbors for Milling Machines 49-53
Arbors for Screw Slotting Cutters 243
Arbors for Shell End Mills 53
Architects, Scales for 406, 407
Attachments for Grinding Machines
63-89
63-89
Attachments for Milling Machines
Attachments, Indexing, for use with Rack Cutting Attachments 72
Attachments, Internal Gear Cutting, for Automatic Gear Cutting Machines 137
Attachment, Screw Slotting 189
Attachments, Quill Gear Cutting, for Automatic Gear Cutting Machines 138
Automatic Cutting-off Machines 166-171
Automatic Gear Cutting Machines 124-133
Automatic Gear Cutting Machines, Attachments for 137, 138Automatic Gear Cutting Machines, Arbors, Bush-ings and Collets for134-136
Automatic Gear Cutting Mchs., Cutters for 263-269, 272-274
Automatic Gear Cutting Machines, Sets of Tools for 136
Automatic screw Machines 154-159
Automatic Screw Machines, Tools for 172-189
Automatic Turret Forming Machines. 160-165
Back Rests, Uni $\mathbf{v e r s a l}$ 120
Bench Centres, Improved 203
Bench, Improved Work 217
Bench Leg Castings and Patterns 217
Bevel Gear Cutting 304-308
Bevel Gears, Cutters for Mitre and 267, 280
Bevel Gears, Instructions for Ordering 303
Bevel Protractors 424-426
Beveled Steel Straight Edges 403
Bevels, Universal 427
Bicycle Chain Links, Cutters for Sawing 258
Blades for Cutting-off Tool Posts 182
Boiler Plate Gauge 411 411
Box Tools for Screw Machines 179
Page.
Boxes, Cast Iron Packing, for use in Case-Hardening and Annealing Furnaces 214
Bronze Circulating Pump 221
Bronze Shoes for Universal Back Rests 121, 122
Bushings, Expansion 55
Bushings for Automatic Gear Cutting Machines 134, 135
Button Gauge 402
Baliper Gauges, Standard 328, 329
Callper, Gear Tooth 376
Caliper Rule, Slide 401
Caliper Rules, Steel 402
Caliper, Screw Thread Micrometer 362, 363
Caliper Squares 411
Calipers and Dividers, Spring 382-386
Calipers, Firm Joint 387-3!0
Calipers, Micrometer 333-365
Calipers, Micrometer, Description of 333
Calipers, Micrometer, Ratchet Stop for 335
Calipers, Vernier 372-375
Calipers, Wire Gauges and 449
Cam Cutting Attachment for Milling Machines 73
Case Hardening and Annealing Furnaces 210-213
Cases for Micrometer Calipers, Leather 341
Cast Iron Core Boxes 310
Cast Iron Packing Boxes for use in Case Hardening and Annealing Furnaces 214
Cast Iron Sign Letters 218
Cast Iron Straight Edges 319
, Centre Gauges 434, 435
Centre Line on Gear Cutters 261
Centre Squares, Universal or 410
Centering and Facing Tools 180
Centres, Improved Bench 203
Centrifugal Water Pump 219
Chucking Machine, Horizontal 194, 145
Chucking Machines, Vertical 190-193
Chucks, Spring, for Milling Machines 43
Circular and Diametral Pitch of Gears, Tablea of $28!$
Circular Milling Attachments 69-70
Clippers, Hair 813
Clippers, Horse 312
Code, Telegraphic 468-482
Collet Blanks 48
Collets for Automatic Gear Cutting Machines 13.7
Collets for Milling Machines 46, 47
Collets, Spring, for Screw Machines 176, 177
Combination Sets 421-423
Combination Squares 415-418
Comparative Sizes of Gear Teeth 288-290
Construction and Use of Universal Grinding Ma- chines, Treatise on 309
Convex and Concave Cutters 255, 256
Core Boxes, Cast Iron 310
Corner-Rounding Cutters $2 \overline{5} 7$
Cotton and Woolen Manufacturers' Tools 314-317
Counter-shafts and Hangers 204, 205
Page.
Cutter Grinding Machlne I12
Cutter and Reamer Grinder, Unlversal 113-115
Cutters, Angular 246
Cutters, A ngular, with Side Ground Concave 247
Cutters, Convex and Concave 255, 256
Cutters, Corner-Rounding 257
Cutters, Double Angle 247
Cutters, Epicycloidal 278, 279
Cutters, Face Milling, with Inserted Teeth 244
Cutters, Face Milling, with Inserted Teeth and Threaded Holes 245
Cutters for Automatic Geai Cutting Mchs. 263-269, 272-274
Cutters for Fluting Reamers 251
Cutters for Grooving Taps 248
Catters for Grooving Taps and Reamers 249
Cutters for Making Four Lipped Twist Drills 254
Cutters for Making Straight Lipped Twist Drills 253
Cutters for Making Twist Drills 252
Cutters for Mitre and Bevel Gears 267-290
Cutters for Sawing Bicycle Chain Links 258
Cutters for Spiral Mills 246, 24×
Cutters for Teeth of Gear Wheels 261-2×1
Cutters for Teeth of Gear Wheels, Circular Pitch, 268,269
Cutters for Teeth of Gear Wheels, Metric 272-274
Cutters, Formed Milling 223, 247
Cutters, Interlocking Side Milling 231
Cutters, Milling 224-226
Cutters, Milling, with. Nicked Teeth 299
Cutters, Screw Slotting 242, 243
Cutters, Side Milling 230
Cutters, Sprocket Wheel 258, 260
Cutters, Standard Keyways for 264
Cutters, Stocking 275-277
Cutters, T Slot 239
Cutters with Inserted Teeth 245
Cutters with Special Holes 251
Cutters, Worm Wheel $2: 1$
Cutting of Gear Wheels, Sizing and $282-285$
Cutting-off and Knurling Tool Posts, Combination 182
Cutting-off Machines, Automatic 166-171
Cutting-off Tool Posts 182
Cutting Speeds, Table of 139
Cylindrical Gauges, Standard Internal and External 324, 325
Decimal Equivalents of Twist Drill and Steel Wire
Gauge, Table of453
Depth Gauges 368, 378-381
Depth Gauges, Nicrometer $3+8$
Depth of Gear Tooth Gauges 437
Description of Micrometer Caliper 333
Description of Vernier 372, 373
Dial Test Indicator 321
Diametral and Circular Pitch of Gears, Tables ot 284
Die Holders for Screw Machines 172
Dimensions of Plain Milling Machines 14, 15
Dimensions of Universal Milling Machines
Page.
828
828
Disks, Standard Reference
382-386
Dividers and Calipers, Spring
247
247
Double Angle Cutters
Double Angle Cutters 406, 407
Draughtsmen, Open Steel Triangles for 410
Draughtsmen's Protractor 408
Draughtsmen's Protractor, Table for Use with 409
Draughtsmen, Steel Straight Edges for 404
Drill Holders for Screw Machines 178
Dumping Forks and Trucks 214
End Graduations, Rules with 393, 396
End Measuring Rods, Standard 327
End Mills 232-238
End Mills, Morse Taper 235
End Mills, Arbors for Shell 53
End Mills, Shell 237, 238
End Mills, Spiral 233
End Mills, Spiral, Morse Taper 236
End Mills, Spiral Shell 238
End Mills with Centre Cut 234
Engineers' Scales 407
English Standard Wire Gauge 448
Epicycloidal Cutters 278, 279
Expansion Bushings 135
Face Milling Cutters with Inserted Teeth 244, 245
Face Milling Cutters with Inserted Teeth, Arbors for 52
Face Milling Cutters with Inserted Teeth and Thread-
ed Holes. 245
Feeding Fingers and Collets for Screw Machines 176, 177
Feeds, Power, for Screw Machines 179
Firm Joint Call pers 387-390
Flanged Vises 87
Flat Stock, Ground 332
Flexible Steel Rules 396,398
Floating Holders for Screw Machines 178
Fly Cutter Arbors 52
Formed Cutter Grinding Attachment 118
Formed Milling Cutters 223, 247
Formed Saws for Slitting Copper 241
Forming Machines, Automatic Turret 160-165
Forming Tool Blanks and Holders 181
Formulas for Ascertaining Cutter Number Required for Cutting Mitre and Bevel Gears 281
Formulas for Calculating the Diameters of Sprocket Wheels 259, 260
Formulas for Determining the Dimensions of Gears 305-308
Formulas for Determining the Dlameter of Gears by Metric Pitch 270, 271
Formulas in Gearing 309
Foundry Rammers, Rubler Tipped 311
Four Lipped Twist Drills, Cutters for Making 254
French or Metric Measures 371
Friction Pulleys, Self-Oiling 206, 207
Furnaces, Case-Hardening and Annealing 210,213
Furnace, Small Hardening, for Open Fire 215
Page.
Cas Heater 462 442
Gauge, American Standard Wlre
Gauge, American Standard Wlre
Gauge, Boiler Plate 411
Gauge, Button 402
Gauge, English Standard Wire 44
Gauge, Helght 877
Gauge, Jewelers' Wire 457
Gange, Jobbers Drill 460
Gauge, Micrometer Sheet Metal 859
Gange, Pocket Sheet Metal 834
Gauge, Sheet Metal 823
Gange, Standard Screw Thread 437
Gruge, Steel Music Wire 445
Gauge, Thickness 433
Gange, U. S. Standard 448
Gauge, Washburn \& Moen, Standard Wire 44
Gauge, Wire, with Equivalents in Thousandths 442
Gauge, W orm Thread Tool 441
Gauges, Acme Standard Screw Thread 438,434
Gauges, Centre 434, 435
Gauges, Depth 368, 378-381
Gauges, Depth of Gear Tooth 437
Gauges, Limit 330, 331
Gauges, Memorandum on 463, 464
Gauges, Metric 324, 326, 329
Gauges, Micrometer Caliper Paper 356, 357
Gauges, Micrometer Depth 368
Gauges, Micrometer, Inside 366, 367
Gauges, Rolling Mill 450
Gauges, Round Wire 442-445
Gauges, Screw and Wire 453, 454
Gauges, Screw Pitch 430-433
Gauges, Standard Caliper 328, 329
Gauges, Standard Internal and External Cylindrical 324, 325
Gauges, Surface 428, 429
Gauges, Twist Drill and Steel Wire 458
Gauges, Wire 449
Gauges, Wire and Caliper 449
Gear Cutting Attachment for Milling Machines 76
Gear Cutting Attachments, Internal, for Automatic
Gear Cutting Machines
Gear Cutting Machines 137 137
Gear Cutting Attachments, $\dot{Q} u i l i$, for Autoniatic Gear Cutting Machines 138
Gear Cutting Machines, Arbors, Bushings and Col- lets for A utomatic 134-136
Gear Cutting Machines, Automatic 123-133
Gear Cutting Mchs., Cutters for Automatic 263-269, 27:-274
Gear Cutting Machines, Index Plates for 300
Gear Rules 399
Gear Teeth, Comparative Sizes of 288-290
Gear Tooth Caliper 376
Gear Tooth Gauges, Depth of 437
Gear Wheels, Sizing and Cutting of 282-285
Gearing, Formulas in 309
Gearing, Practical Treatise on 309
l'age.
304-308 261-281
Gears, Cutting, Bevel
304-308
304-308
Gears, Formulas for Determining Dimensions of
302
302
Gear, Standard
284
284
Gears, Tables of Circular and Diametral Pitch
Gears, Tables of Circular and Diametral Pitch 2211, 221
Geared Pumps, Nos. 1, 3 and 11
413
413
Graduations on Standard Steel Rules 391 391
Grinder, Universal Cutter and Reamer 113-115
Grinding Fixtures, Internal 98,99
Grinding Machine, Cutter 100-105
Grinding Machines, Plain
106-109
106-109
Grinding Machines, Surface
Grinding Machines, Surface
110-117
110-117
Grinding Machines, Tool
Grinding Machines, Tool 309
Grinding Machines, Treatise on Construction and Use of
92-97
92-97
Grinding Machines, Universal
208
208
Grindstone Trough
Grindstone Trough
209
209
Grindstone Truing Device
Grindstone Truing Device
332
332
Ground Flat Stock
Ground Flat Stock
196, 197
196, 197
Frand Lathe, Universal
Frand Lathe, Universal 313
Hair Clippers
Hair Clippers
309
309
Hand Book for Apprenticed Machinists
Hand Book for Apprenticed Machinists
75
75
75
Hand Milling Attachment
Hand Milling Attachment 204, 205$\underset{\text { Hangers, Self-Oiling }}{\text { Hardeng Furnace, }}$ Small, for ©pen Fire
215
Hardened Cast Steel Try Squares 412, 413
Hardened Steel Straight Edges 404
Heater, Gas 462 462
Height Gauge 377
Hermaphrodite Calipers, Firm Joint 399
High Speed Milling Attachment ©3 ©3
Hobs, Worm 292 292
Hobs, List of W orm
Hobs, List of W orm
178
178
Holders, Floating, for Screw Machines
Holders, Floating, for Screw Machines
174, 175
174, 175
Hollow Mills
Hollow Mills
194, 195
194, 195
Horizontal Chucking Machine
Horizontal Chucking Machine 312
Horse Clippers.
Horse Clippers.
203
203
Improved Bench Centres
Improved Bench Centres 313
Improved Hair Clippers
Improved Hair Clippers
312
312
Improved Horse Clippers
Improved Horse Clippers 316
Improved Roving or Yarn Scales
Improved Roving or Yarn Scales
406, 407
406, 407
Improved Scales for Draughtsmen
Improved Scales for Draughtsmen 424, 425 424, 425
Improved Universal Bevel Protractor 217
Improved Work Bench
394, 395
394, 395
Improvement in Standard Steel Rules
Improvement in Standard Steel Rules 446 446
Improvement in Wire Gauges 77-86
Index Centres 86
Index Centres, Tables for
300
300
Index Plates for Gear Cutting Mac 54 54
Index Table for Milling Machines
Index Table for Milling Machines s2 s2 301 301
Index Wheels and Worms, List of
Index Wheels and Worms, List of Indexing Attachments, for use with Rack Cuting Attachments 72
Page．
Indicator，Dial Test 321
Indicator，Lathe Test 415
Indicator，Test 320
Inserted Tooth Face Milling Cutters 244, 245
Inserted Tooth Milling Cutters 24，244， 245
Inside Micrometer Gauges 36.
Instructions for Ordering Bevel Gears 3103
Interlocking Side Milling Cutters $\because 31$
Internal Gear Cutting Attachment for Autumatic
Gear Cutting Machines 137
Internal Gear Wheel Cutting 364
Internal Grinding Fixtures 98， $9: 1$
Involute Gear Cutters $261-27$
Iron and Steel Sheets，Table of Weights of 465
Jewelers＇Wire Gauge 4.7
Jobbers＇Drill Gauge 460
Tey Seat Rules 412
Keyways for Cutters，Standard 264
Knurling and Cutting．off Tool Posts，Combination $18:$
Large Screw and Wire Gauges 454
Lathe Mandrels 5is
Lathe Test Indicator 415
Lathe，Universal Hand 19
Leather Cases for Micrometer Calipers 341
Limit Gauges 330， 331
Mandrels，Lathe 5% 5%
Mandrels，Taper 54 54
Measuring Rods，Standard End 327 327
Memorandum on Gauges
Memorandum on Gauges 463， 464 463， 464
Mercury Plumb Bobs 32：2
Metal Slitting Saws 240
Metallic Scales，Triangular 405
Metric Gauges ：324，326，3：9
Metric Gear Tooth Cutters 27シージ4
Metric Measures 371
Metive Steel Rules 397,398
Micrometer Caliper for Measuring Tubing $33: 9$
Micrometer Caliper，Paper Gauges 3．56，357
Micrometer Caliper，Screw Thread 3152， 363
Micrometer Calipers 333－365
Micrometer Calipers，Description of 333
Micrometer Calipers for Electricians 337
Micrometer Calipers，Leather Cases for 341
Micrometer Calipers，Ratchet stop for 335
Micrometer Calipers，Tables for Use with 369，371
Micrometer Depth Gauges 318
Micrometer Gauges，Inside 366， 367
Micrometer Heads， 1 inch 344
Milling Cutters 2．4－227 255， 256
Milling Cutters，Convex and Concave
Milling Cutters，Convex and Concave Milling Cutters，Face，with Inserted Teeth 244， 245
Milling Cutters，Formed 223，247
＇Milling Cutters，Interlocking Side 231 231
Milling Cutters，Side 230
Milling Cutters with Nicked Teeth 224
Page.
Milling Machines, Arbors for 49-53
Milling Machines, Attachments for 68-68 68-68
Milling Machines, Cam Cutting Attaclıment for 73
Milling Machines, Collets for 46, 47
Milling Machines, Dimensions of Plain 14, 15
Milling Machines, Dimensions of Universal 1
Milling Machines, Gear Cutting Attachment for 76
Milling Machines, High Speed Milling Attachm't for 63
Milling Machines, Index Plates for 54
Milling Machines, Index Tables for 82
Milling Machines, Plain 16-41
Milling Machines, Rack Cutting Attachment for 71
Milling Machines, Slotting Attacbment for 67
Milling Machines, Treatise on 309
Milling Machines, Tools for 57-62
Milling Machines, Universal 2-13
Milling Machines, Universal Milling Aittachment for 66
Milling Machines, Vertical Spindle 42-45
Milling Machines, Vertical Spindle villing Attach. ments for 64, 65
Milling Machines, Vises for 87-89
Mills, End 232-238
Mills, End, with Centre Cut 234
Mills, Face, with Inserted Teeth 244
Mills, Hollow 174, 175
Mills, Shell End 237
Mills, Spiral End 233
Mills, Sphrai Shell End 238
Millwrights, Steel Squares for 414
Mitre and Bevel Gears, Cutters for 281
Morse Taper End Mills 235
Morse Taper Spiral End Mills 236
Music Wire Gauge, Steel 445
Narrow Firm Joint Calipers 390
Narrow Steel Rules 393, 398
Oil Pump 220
Open Steel Triangles 410
Packing Boxes for Use with Case-Hardening and Annealing Furnaces 214
Paper Gauges, Micrometer Caliper 356, 357
Patterns for Improved Work Bench 217
Plain Grinding Machines 100-105
Plain Grinding Machines, Attachments for 120-122
Plain Grinding Machines, Treatise on the Use of 309
Plain Milling Machines 16-41
Plain Milling Machines, Dimensions of 14, 15
Plain Screw Machines 140-145
Plumb Bobs, Mercury 322
Pocket Screw and Wire Gauge 453
Pocket Sheet Metal Gauge 334
Pocket Vernier Caliper 374
Pointing Tools for Screw Machines 180
Polishing and Finishing Machine with Brake 198, 199
Power Feed for Screw Machines 179
Practical Treatise on Gearing 309
Page.
Protractors, " B. \& S."
$4 \geqslant 4-4 \geq 6$
Protractore, Berel
403
403
Protractor, Draughtemen's
Protractor, Draughtemen's
409
409
Protractor, Table for Cize with Dranghtomen's
Protractor, Table for Cize with Dranghtomen's
309
309
Publications
Publications
306, 80.1
306, 80.1
Pulleys, Self-Oiling Friction
Pulleys, Self-Oiling Friction
± 2
± 2
Pump Accessories
Pump Accessories
$2 \div 1$
$2 \div 1$
Pump, Bronze Circulating
Pump, Bronze Circulating
$\pm 20,2=1$
$\pm 20,2=1$
Pumps, Geared.
Pumps, Geared.
± 20
± 20
Pump, Oil
Pump, Oil
219-231
219-231
Pumps, Water
Pumps, Water
183
Quill Gear Cutting Attachments for Automatic Gear
Quill Gear Cutting Attachments for Automatic Gear Cutting Machines
1
1
Rack Cutting Attachments for Milling Machines 72
Rammers, Rubber Tipped Foundry 311
Ratchet Stop for Micrometer Calipers 3×5
Reamers, Cutters for Fluting 251
Reamers, Cutters for Grooving Taps and 249
Reamers, Taper 264
Reel for Roring and Yarn 314
Reference Disks, Standard 326
Rods, Standard End Measuring 32
Rolling Mill Gauges 450
Roving Reel 315
Roving Scales 315, 316
Roving Scales, Improved 316
Rubber Tipped Foundry Rammers 311
Rule, Gear 399
Rule, Graduations on Standard Steel 391
Rule, Six Inch with Slide 401
Rule, Slide Caliper 401
Rules, Key Seat 412
Rules, Metric Steel. 397, 39K
Rules, Square Steel 400
Rules, Standard Steel 392
Rules, Standard Steel, Improvement in 394, 335
Rules, Steel Caliper 402
Rules, Steel Tempered Shrink 399
Rules, Triangular Steel 400
Rules with End Graduation. 3:3, 396
Eample Weighing Scales 317
Saws, Formed, for Slitting Copper 241 241
Saws, Metal Slitting 240
Scale and Vernier for Milling Machines 72
Scales for Architects and Draughtsmen, Improved 406, 407
Scales, Roving or Yarn Weighing 316
Scales, Sample Weighing 817
Scales, Triangular, Boxwood and Metallic 405
Screw Adjusting Firm Joint Calipers 388
Screw and Wire Gauges 483, 454
Screw Arbors for Milling Machines 51
Screw Gauge, Table of Decimal Equivalents of 455
Screw Machines 140-159
Screw Machines, Automatic
Page.
Screw Machines, Plain 154-159 154-159
Screw Machines, Power Feed for 140-145
Screw Machines, Tooln for 179
Screw Machines, Wire Feed 172-188
Screw Pitch Gauges 146-153
Screw Slotting Attachment 430-433
189Screw Slotting Cutter Arbors
Screw Slotting Cutters 243
Screw Slotting Device 242, 243 242, 243
Srew Slotting Machine 200, 201
Screw Thread Gauge, Standard 437
Screw Thread Micrometer Caliper. 362, 363
Screw Thread Micrometer Caliper, Tables for Use
with
with 364, 365 364, 365
Screw 'Threat Tool Gauge, 29 Degree 439
Screw Thread Tool Gauge, 29 Degree, Improved 438
Screw Threads, U. S. Standard 436
Self-Oiling Friction Pulleys 206, 207
Self-Oiling Hangers 204, 205
Sets, Combination 421-423
Sheet Metal Gauge 323
Sheet Metal Gauge, Micrometer 359
Sheet Metal Gauge, Pocket 334
Shell End Mills 237, 238
Shell End Mills, Arbors for 53
Shell End Mills, Spiral 238
Shrink Rules, Tempered 399
Side Milling Cutters 230
Side Milling Cutters, Interlocking 231
Side Milling Cutters with Inserted Teeth 227, 228
Sign Letters, Cast Iron 218
Single Dial Index Centres 78
Six Inch Rule with slide 401
Sizes of Numbers of EnglishStandard Wire Gatuoe 443
Sizes of Numbers of Steel Music Wire Gauge 445
Sizes of Numbers of $U . S$. Standard Gauge 451, 452
Sizes of Tap Drills for U. S. Standard and V Threads 461
Sizing and Cutting of Gear Wheels 282-285
Slide Caliper Rule 401
Slitting Saws, Metal 240
Slotting Attachment for Milling Marhines 67
Small Hardening Furnace for Open Fire 215
Soda Kettle 216
Spiral End Mills 233
Spiral End Mills, Morse Taper 236
Spiral Mill Cutters 246, 248
Spiral Shell Encl Mills 238
Spring Calipers and Dividers 382-386
Spring Chucks 48
Spring Collets for Screw Machines 176, 177 380
Spring Depth Gauges
Spring Depth Gauges
Sprocket Wheel Cutters 258,260
Sprocket Wheels, Formulas for Calculating Diam. eters of 259, 260
Page.
414
Square, Millwrights'
400
400
Square Steel Rules
411
411
Squares, Combination 416-418
Squares, Graduated Steel 413
Squares, Hardened Cast Steel Try 412, 413
Squares, Thin Steel 414
Squares, Universal or Centre 410
Standard Caliper Gaugen 328, 329
Standard End Measuring Rods 327
Standard Gauge, U. S. 448
Standard Gears 302
Standard Gears, Agents for 302
Standard Internaland External Cylindrial Gangen 324, 3.25
Standard Keyways for Cutters 264
Standard Reference Disks 326
Standard Screw Thread Gauge 437
Standard Steel Rules 392
Standard Steel Rules, Graduations on 391
Standard Steel Straight Edges $40: 3$
Standard Steel Yard Measure 401
Standard Surface Plates 318
Standard Tapers 51
Standard T Slot Cutters $9: 35$
Standard Wire Gauges, American 442
Standard Wire Gauges, English 443
Standard Wire Gauge, Washburn \& Moen 444
Standards for Wire Gauges 447
Steel Caliper Rules 4 (r)
Steel Gear Rules $3!3$
Steel Music Wire Gauge 445
Steel Rules 391, 40)
Steel Rules, Flexible 39\%, 398
Steel Rules, Metric 397,398
Steel Rules, Narrow 393, 30 N
Steel Rules, Tempered 393, 396, 398
Steel Rules, Tempered, Narrow 398
Steel Shrink Rules, Tempered 399
Steel Squares, Graduated 413
Steel Squares. Thin 414
Steel Triangles, Draughtsmen's Open 410
Steel Yard Measure, Standard 400
Stocking Cutters $275-27$
Straight Edges, Beveled Steei 403
Straight Edges, Cast Iron 319
Straight Edges, Steel, for Dranghtsmen 404
Straight Edges, Hardened Steel 404
Straight Edges, Standard Steel 403
Straight Lipped Twist Drills, Cutters for Making 253 253
Stubs' Gauges, Table of Decimal Equivalents of 456
Surface Gruges 428, 429
Surface Grinding Machines 106-109
Surface Plates, Standard 318
Swivel Vise, Adjustable 77
Swivel Vises 88
Page.
239 - Slot Cutters
285
285
Table for Index Centres 86
Table for Use with Draughtsmen's Protractor 409
Table of Cutting Speeds 134 134
Table of Decimal Equivalents of Parts of an Inch 369 369
Table of Decimal Equivalents of Hundredths of a Millimetré 370
Table of Decimal Equivalents of Screw Gauge 455
Table of Decimal Equivalents of Twist Drill and Steel Wire Gauge 459
Table of Parts, Acme Thread Gauge 440
Table of Sizes of English Wire Gauges 443
Table of Standard Tapers
Table of Standard Tapers 51 51
Table, Index, for Milling Machines 82
Table, Sizes of U.S. Standard Gauge Numbers. 451, 452
Table, Weights of Iron and Steel Sheets 465
Table, Weights of Square and Round Bars of Iron. 466,467
Tables for Use with Micrometer Calipers. 369-371
Tables for Use with Screw Thread Micrometer Calipers 364, 365
Tables of Circular and Diametral Pitch 284 284
Tables of Sizes of Different Wire Gauges 447
Tables of Sizes of Stubs' Wire Gauges 456
Taps, Cutters for Grooving 250
Taps and Reamers, Cutters for Grooving 249
Tap Drills, Sizes of, for U.S. Standard and V Threads 461 461
Tap Holders for Screw Machines 173
Taper Mandrels 54 54
Taper Milling Attachment 74 74
Taper Reamers 264 264
Taper Turning Tools 183 183
Tapers, Table of Standard 51 51
Telegraphic Code
Telegraphic Code 468-482 468-482
Tempered Steel Rules 320
Test Indicator
321
321
Test Indicator, Dial
Test Indicator, Dial
415
415
415
Test Indicator, Lathe
Test Indicator, Lathe
433
433
Thickness Gauges
Thickness Gauges
414
414
Thin Steel Squares
439
439
Thread Gauge, Acme Stameard
Thread Gauge, Acme Stameard
438
438
Thread Gauge, Acme Standard, Improved
Thread Gauge, Acme Standard, Improved
181
181
Tool Blanks and Tool Holders, Forining
Tool Blanks and Tool Holders, Forining 110-117
Tool Grinding Machines
Tool Grinding Machines
182
182
Tool Posts, Cutting-off Posts, Cutting off Knurling, Combination 182
Tools, Centering and Facing
Tools, Centering and Facing 180 180

Tools for Milling Machines

Tools for Milling Machines 67-62 67-62 172-188
Tools for Screw Machines
Tools for Screw Machines Tools, Sets of, for Automatic Gear Cutting Machines 136 286, 287
Tooth Flanks Undercut
Tooth Flanks Undercut
Transfer Firm Joint Calipers 389
Treatise on Gearing, Practical 309
Treatise on Construction and Use of Universal cirind-ing Machines309
Page.
Treatise on Milling Machines 309
Triangles, Open Steel, for Draughtsmen 410
Triangular Scales, Boxwood and Metalli. 405
Triangular Steel Rules 400
Triple Index Centres 80,81
Trucks and Dumping Forks 214
Try Squares 412, 413
Twenty-nine Degree Standard Screw ThreadGauges 438, 439
Twist Drills, Cutters for Making 252
Twist Drills, Cutters for Making Four Lipped 254
Twist Drills, Cutters for Making Straight Jipped 253
Twist Drill and Steel Wire Gauges 458
Twist Drill and Steel Wire Gauge, Table of Decimai Equivalents of 459
Tubing, Micrometer for Measuring 339
Turret Forming Machines, A utomatic; 160-165
Tndercut, Tooth Flanks 286, 287
Universal and Tool Grinding Machine 116, 117
Universal and Tool Grinding Machine, Attach. ments for 119
Universal Back Rests 120
Universal Back Rests, Bronze Shoes for 121, 1:2
Universal Bevels 427
Universal Cutter and Reamer Grinder 113-115
Universal Grinding Machines 90-97
Universal Grinding Machines, Attachments for 98, 120-122
Universal Grinding Machines, Construction and Useof, Treatise on309
Universal Hand Lathe 196, 197
Universal Mflling Attachment 66
Universal Milling Machines 2-13
Universal Milling Machines, Dimensions of 1
Universal or Centre Squares 410
Universal Surface Gauges 428
U. S. Standard Gauge for Sheet Plate, Iron and Steel, Micrometer Caliper 345
U. S. Standard Gauge 448
U. S. Standard Gauge, Sizes of Numbers of the 451, 452
U. S. Standard Screw Threads 436
Wernier, Description of 372, 373
Vernier Calipers, 374, 375
Vernier, Scale and, for Milling Machines. 72
Vertical Chucking Machines 190-193
Vertical Spindle Milling Attachments 64, 65
Vertical Spindle Milling Machines 42-45
Vises, Adjustable Swivel 77
Vises, Milling Machine 87-89
Trashburn \& Moen Standard Wire Gauge 444
Water Pump, Centrifugal 219
Water Guards for Universal Grinding Machines 120
Weights, Table of, Iron and Steel Sheets 465
Weights, Table of, Square and Round Bars of Iron 466, 467
Weighing Scales, Sample 317
Wire Feed Screw Machines 146-153
Wire Gauge, Improvement in the 446
Page.
Wire Gauge, with Equivalents in Thousandths 442
Wire Gauges 442-445, 449, 453-458
Wire (iauges and Callpers 449
Wire Gauges, Different Standards for 447 447
Whe Giauged, Round 442-445
Wooden Ifandle Mifrometer for Rolling Mills 341
Woolen and Cotton Manufacturers' Tools 314-317
Work Bench, Improved. 217
Worm llolon 292
Worm IIolon, List of 293-299
Worm 'lhead 'rool Gauge 441
Worm Wheel Cutter.s 291
Worms, Index Wheels and, List of 301
Eard Measure, Standard Steel 400
Yarn Reel 314
Yarn Scales 315-317

OF INTEREST.

The business now conducted by the Brown \& Sharpe Mfg. Co. was founded in 1833 by David Brown and his son Joseph R. Brown. David Brown retired in 1841 and the business was continued by Joseph R. Brown until 1853, when Lucian Sharpe became his partner and the firm of J. R. Brown \& Sharpe was formed. The Brown \& Sharpe Mfg. Co. was incorporated in 1868.

The manufacture of Steel Rules and other tools of precision was begun by Joseph R. Brown in 1850 and in 1852 Samuel Darling began a similar line of work. The partnership of Darling, Brown \& Sharpe was formed in 1866 and the business carried on under that name until, within a few years, the partnership was dissolved by the purchase of Mr. Darling's interest.
The Works are situated one-half mile from the business centre of Providence and are five minutes' walk northwest from the Union Railroad Station.

The Buildings are modern and especially arranged to meet the requirements of the business. The machine shops are fire-proof and the business is therefore free from danger of serious interruption and, on work entrusted to us, customers are given security against loss by fire.

Floor Area. The four main manufacturing buildings have a floor space of about $295,000 \mathrm{sq}$. ft ., and the two foundries about $84,000 \mathrm{sq}$. ft . In 1853 the floor space occupied was 1,800 sq. ft .; the present buildings occupy $482,475 \mathrm{sq}$. ft. or about 11 acres.

The Machines and Tools described in this catalogue are made with the purpose that they shall be the best in their respective classes. Careful attention is constantly given to insure workmanship of the best quality. Cylindrical bearings are accurately ground; plain bearings are scraped to surface plates that are kept trued by means of master plates. All alignments are correct.

Improvements of greater or less importance are constantly being made in our machines and tools, thus adapting them to the latest requirements of machine shop practice.

All machinery is subjected to careful inspection and, when deemed requisite, to actual operation before being packed.

Should any defect become apparent in the workmanship of any of our machines or tools, we request that we be promptly notified of the same.

The Ploor Space Dimensions of machines cover the extreme projections and points of travel of the various parts. The dimension at right angles to line of counter-shaft is given first.

The Speeds of Counter-shafts given in catalogue are only approximate and must be varied according to the nature or the work and the circumstances under which the tools are used.

Drawings; sho. ng plans of our machines and counter-shafts, can be had on application by those who contemplate purchasing machinery in our line. These drawings are also sent upon receipt of order for any of our machines. They supplement the Floor Space Dimensions given in catalogue by indicating how tools can be advantageously over-- arranged to run by each other.

dx

The Willcox \& Gibbs Sewing Machines have been made by us for more than forty years and we refer to them as an illustration of the quality of our work.
Orders. We request our customers to use the names or numbers of tools, as printed in catalogue. This will enable us to fill orders promptly and correctly. We are often at a loss to know what is wanted when different names or descriptions are employed.

We would impress upon purchasers the advantage of ordering, if possible, articles that are made in large quantities and carried in stock, in the place of goods that vary only in one or two dimensions from these, but have to be made to order. For example, a variation of one-eighth of an inch in the size of hole of a cutter, often causes extra expense and several days' delay.

In ordering special tools to be graduated and figured, our customers are particularly requested to send a clear description and a sketch showing the exact position of figures and graduations wanted.

When goods are ordered to be sent by express, with bill to be collected on delivery, the express charge for collecting rill be added. Small articles can be sent by mail when additional cost of postage is remitted. We are noi "sponsible for losses ir the mail.

The Machines and Tools described in this catalogue are usually kept in stock and will be packed and delivered at railroad or steamer in this city, without extra charge.

Verbal Orders and Instructions should be confirmed in writing.

Please address all business communications to the Company.

We carry a representative line of machine tools and a complete line of small tools at our Western Store, 16 and 18 South Clinton Street, Chicago, Ill.

We also carry representative lines of machine and small tools at our New York Office, 136 Liberty Street, Room 507. We also have a Philadelphia Office, 444 The Bourse.

Machine Tools can be ordered direct or through our representatives. List on second page of cover.

Small Tools are carried in stock and sold by instrument and hardware dealers throughout the country.

In cases where these cannot readily be procured from dealers, we will send any of our small tools upon receipt of price, to any place in the United States or Canada.

Cutters may usually be obtained at once and the delay and cost of transportation saved.

Standard Gears may also be obtained from hardware and machinists' supply dealers and are carried in stock by our agents throughout the country. See page 302.
Catalogues of the Latest Edition should be kept on hand. We are pleased to mail a copy to any address. Old catalogues should be destroyed. When reference is made to page, give date or number of catalogue found at top of first page of cover. The prices and dimensions found in this catalogue are subject to change without notice.

Pamphlets or Circulars describing the construction and use of the various machines are furnished on:

Publications on Milling and Grinding Machines, Practical Treatise on Gearing, Formulas in Gearing and Hand Book for Apprenticed Machinists may be obtained through booksellers, hardware and instrument dealers or are mailed on receipt of price, as per catalogue.
Announcements of Important Changes, notices of new machines, tools and items of general interest in relation to our business, will be published in upper left-hand corner of the last page of the "American Machinist."
Medals Awarded: London, 1862 ; Paris, 1867 and 1878; Vienna, 1873 and Philadelphia, 1876. At the Tennessee Centennial Exposition of 1897 we received the Gold Medal ; at Paris, 1889 and 1900, and at Brussels, 1897, the Grand Prix.
As most of our machines are the outgrowth of our own wants in manufacturing, their capacity and the nature of the work they will perform, can be better appreciated, perhaps, by a visit to our works. We are always ready and glad to show our works to those who contemplate purchasing machinery or are interested in machine shop or foundry practice.

BROWN \& SHARPE MFG. CO.

FIGURES SHOWING CAPACITY OF MACHINES.

At the head of most of the pages devoted to machinery we have placed, immediately under the number of each machine, the figures that best indicate its capacity-the object being to assist those who desire to quickly compare machines, or wish to remember or designate them by their size in a way that is customary with lathes and planing machines. In some cases this plan is novel, so we have repeated the figures of capacities below the illustrations of the machines. For example: the illustration of one of the Grinding Machines is headed, No. $1,8^{\prime \prime} \times 24^{\prime \prime}$, Universal Grinding Machine, and is followed by the words, "The centres swing $8^{\prime \prime}$ in diameter and take $24^{\prime \prime}$ in length."

CONSTRUCTION NUMBERS.

In ordering tools, attachments or duplicate parts of machines, it is often desirable to give the construction number of the machine.

These numbers may le lorater as follows:
Universal and Plain Milling Machines: above spindle on frame, top front of table, top front of knee.
Vertical Spindle Milling Machines: No. 2, top front of table, top front of knee, front of upper box on spindle head; No. 5 , top front of table and top front of ways.

Universal Grinding Machines: top front of swivel table.
Plain Grinding Machines: top front side of guide on table.
Surface Grinding Machines: No. 2, top front of upright, top of table; No. 3, top front of wheel slide.

No. I Tool Grinding Machine: top of rest support.
No. 2 Cutter Grinding Machine and No. 3 Universal Cutter and Reamer Grinder: spot, top of guide bar bracket.

Automatic Gear Cutting Machines: top left-hand side of upright, outer support for work arbor.

Plain and Wire Feed Screw Machines: front side of front box.

Automatic Screw Machines: front side of rear box.

DIMENSIONS OF

UNIVERSAL MILLING MACHINES.

No. of Machine	1	11.2	2	2A	3	4
No. of Tauer Hole in Spindle.	10	10	10	10	11	11
Distance from Centre of Spindle to O. H. A rm.	$51.2{ }^{\prime \prime}$	5 1-2"	$51 \cdot 2^{\prime \prime}$	$51-2^{\prime \prime}$	$63-8^{\prime \prime}$	71.47
Greatest Distance from End of Spindle to Centre in Arbor support.	14"	16 1-2"	16 1.2"	161.2 " 1	1×1.2	21 "
Back Geared.	No	Yes	Yes	Yes	Yes	Yes
Working Surface of Table.	$\left\|\begin{array}{cc} 32 & 3-4^{\prime \prime} \\ \mathbf{x} & 1.2^{\prime \prime} \end{array}\right\|$				$\left.\begin{array}{\|cc} 45 & 1-2^{\prime \prime} \\ \vdots \\ 10^{\prime \prime} \end{array} \right\rvert\,$	
Transverse Movement of Table.	$71-2$ "	7 1-2"	$71-2^{\prime \prime}$	$71.2{ }^{\prime \prime}$	$81.2 \prime$	91
Greatest Distance from Centre of Spindle to Top of Table.	$18^{\prime \prime}$	18'	$171.2{ }^{\prime \prime}$	$171-2{ }^{\prime \prime}$	$19^{\prime \prime}$	19"
Length of Automatic Fecd.	$20^{\prime \prime}$	$20^{\prime \prime}$	$23^{\prime \prime}$	23 "	$28^{\prime \prime}$	331.2
No. of Changes of Feed.	12	20	20	12	20	20
Variations in Feed to one Rev. of	$\begin{aligned} & .005^{\prime \prime} \\ & \text { to } \end{aligned}$	$\begin{gathered} .003^{\prime \prime} \\ \text { to } \end{gathered}$. $00031{ }^{\prime \prime}$	${ }_{\text {c }}^{.001 " ~}{ }^{\text {to }}$	$.004 "$ to	${ }_{\text {. }}^{\text {(004" }}$ "
Spindle.	. $100{ }^{\prime \prime}$.1:0"	.120"	. $400{ }^{\prime \prime}$.160"	.200"
Index Centres Swing.	$10^{\prime \prime}$	10"	10"	10"	12"	$14^{\prime \prime}$
Index Centres Take.	16"	$16^{\prime \prime}$	19 1-2"	$191-2{ }^{\prime \prime}$	$26^{\prime \prime}$	$32^{\prime \prime}$
	2225	2485	2585	2750	4030	5000
et Weight.	lbs.	lbs.	lbs.	lis.	lbs.	lbs.
Floor Space.		$\underset{68^{\prime \prime}}{69^{\prime \prime}}$	$\underset{75}{77^{\prime \prime} x}$	$\stackrel{7 Z^{\prime \prime} x}{75^{\prime \prime}}$	$\begin{gathered} 93^{\prime \prime \prime} \mathrm{x} \\ 86^{\prime \prime} \end{gathered}$	${ }_{\text {110 }}^{110^{\prime \prime}}$
Price.						

No. 1

20 in. $\times 7$ 1-2 in. $\times 18$ in. UNIVERSAL MILLING MACHINE.

Patented Fel. 14, May 23, 1893 ; Aug. 29, 1899; Sept. 10, Nov. 12, 1:NO1; Jan. 13, 1:03; Others pending.

The table has an automatic longitudinal feed of $20^{\prime \prime}$; a transverse movement of 71-2" and can be lowered $18^{\prime \prime}$ from centre of spindle.

The centres swing $10^{\prime \prime}$ in diameter and take $16^{\prime \prime}$ in length.

No. 120 in. $\times 7$ 1-2 in. $x 18$ in. UNIVERSAL MILLING MACHINE.

The Spindle has a hole its entire length and runs in bronze boxes provided with means of compensation for wear. The front end is threaded and has a No. 10 taper hole.

The Cone has 4 steps for $3^{\prime \prime}$ belt, giving, with 3 speeds of counter, 8 changes of speed direct, from 56 to 333 revolu. tions per minute and 4 reverse, from 63 to $\mathbf{2 s}$) revolutions per minute. Speeds in geometrical progression.

The Overhanging Arm is a solid steel bar. Distance from centre of epindle to arm, $51-2{ }^{\prime \prime}$; greatest distance from end of spindle to centre in arbor support, $14^{\prime \prime}$. It is clamped at both bearings by one lever. The arbor support has a hole for bearing for arbor, etc., as well as an arljustable centre.

The Table, including ofl pans and channels, is $353-4^{\prime \prime}$ long, 6 1-2" wide, has a working surface $323^{\prime \prime} \times 61.2^{\prime}$, a T slot 5-8" wide, a transverse movement of $71.2^{\prime \prime}$ and can be low. ered $18^{\prime \prime}$ from centre of spindle. Are of swing ${ }^{2} \times 0^{\circ}$.

The Elevating Screw is telescopic.
The Feed of table, of $20^{\prime \prime}$, is positive and automatic in either direction. It can be changed by a simple movement of lever on front of saddle, and, being driven from the centre, can be used with table clamped at any angle to 53 degrees either side of zero. There are 12 changes of feed, evenly graded from $.005^{\prime \prime}$ to $.100^{\prime \prime}$ to one revolution of spindle. The table feed screw is not splined. A quick return for the table is provided.

The Spiral Head and Foot-stock Centres swing 10" in diameter and take $16^{\prime \prime}$ in length. The head can be set at any angle from 10 degrees below the horizontal to 5 degrees beyond the perpendicular. The front end of spindle is threaded, and has a No. 10 taper hole. The straight hole through spindle, at end of taper, is 1 1-16" in diameter. By means of the raising block the head can be set at any angle on table. The foot-stock centre can be raised vertically and set at an angle in a vertical plane.

Differential Indexing provides for all divisions from 1 to 380.

The Vise swivels and has a graduated base. The jaws are hardened, $51-8^{\prime \prime}$ wide, $11-4^{\prime \prime}$ deep, and will open $23.4^{\prime \prime}$.

The Counter-shaft has 3 friction pulieys 14 " in diameter for $31-2^{\prime \prime}$ belts, and should run about 90 and 120 revolutions per minute direct, and 105 reverse.

Weight of machine ready for shipment, about 2775 lbs .
Net Weight, about 2225 lbs. Floor Space, $68^{\prime \prime} \times 63^{\prime \prime}$.
Dimensions of hox for shipment, $53^{\prime \prime} \times 3 \bar{\circ}^{\prime \prime} \times 63^{\prime \prime}$.
Price includes No. 2 Swivel Vise, change gears, index plates and tables explaining the use of same, 6" 3-jawed chuck, "E" collet, centre rest, raising block, wrenches, and everything else shown in cut, together with overhead works, boxed and delivered f. o. b. at Providence, R. I.

Price, 8
For Arbors, Collets, Tapers, Atcachments and List of Tools, see pages 46 to 89.

No. 1 1-2

$20 \mathrm{in} . \times 7$ 1-2 in. $x 18 \mathrm{in}$.

UNIVERSAL MILLING MACHINE.

Patented Fel. 14. May 23, 1893 ; Aug. 29, 1899; Sept. 10, Nov. 12, 1901 ; Jan. 30, 1903; Others pending.

The table has an automatic longitudinal feed of $20^{\prime \prime}$; an automatic transverse movement of $71-2^{\prime \prime}$ and can be lowered $18^{\prime \prime}$ from centre of spindle.

The centres swing $10^{\prime \prime}$ in diameter and take $16^{\prime \prime}$ in length.

No. 1 1-2 20 in. $\times 7$ 1-2 in. $x 18$ in. UNIVERSAL MILLIING MACHINE.

The Spindle has a hole its entire length and runs in bronze boxes provided with means of compensation for wear. The front end is threaded and has a No. 10 taper hole.

The Cone has 4 steps for 3 belt, and is back geared, giving, with 3 speeds of counter, 16 changes of speed direct, from 16 to 318 and 8 reverse, from 17 to $2(3)$ revolutions per min. ute. Speeds in geometrical progression.

The Overhanging Arm is a solld steel bar. Distance from centre of spindle to arm, $51-2^{\prime}$; greatest distance from end of spindle to centre in arbor support, 16 1-2". It is clitmped at both bearings by one lever. The arbor support has a hole for bearing for arior etc., as well as an adjustable centre.

Arm Braces are furnished and with these in position, milling can be done to $16^{\prime \prime}$ from face of column.

The Table, including oil pans and channels, is 353.4 long, $\mathbf{T}^{\prime \prime}$ wide, has a working surface $323-4^{\prime \prime} \times \mathbf{7}^{\prime \prime}$ a I nlot $5-8^{\prime \prime}$ wide, an automatic transverse movement of $71.2^{\prime \prime}$. Can be lowered $18^{\prime \prime}$ from centre of spindle. Are of swing $2 \times 0^{\circ}$.

The Elevating Screw is telescopic.
The Feed of table, of $20^{\prime \prime}$, is positive and automatic in elther direction. It can be changed by a simple movement of lever on front of saddle, and, heing driven from the centre, can be used with table clampell at any angle to 53 degrees either side of zero. There are 20 changes of feed evenly graded from . 003 " to .120 " to one revolution of spindle. The table feed screw is not splined. A quick return for the table is provided.

The Spirar Head and Foot-stock Centres swing 10' in diame. ter and take $16^{\prime \prime}$ in length. The headcan be set at any angle from 10 degrees below the horizontal to 5 degrees beyond the perpendicular. The front end of spindle is threaded and has a No. 10 taper hole. The straight hole through spindle, at end of taper, is $11.16^{\prime \prime}$ in diameter. By means of the raising block the head can be set at any angle on table. The foot-stock centre can be raised vertically and set at an angle in a vertical plane.

Differential Indexing provides for all divisions from 1 to 380 .

The Vise swivels ahd has a graduated base. The jaws are hardened, $51.8^{\prime \prime}$ wide, $11-4^{\prime \prime}$ deep and will open $23-4^{\prime \prime}$.

The Counter-shaft hats 3 friction pulleys $14^{\prime \prime}$ in diameter for $31.2^{\prime \prime}$ belte, and should run about 144 and 175 revolutions per minute direct, and 160 reverse.

Weight of machine ready for shipment, about 3100 lbs.
Net Weight, about 2485 libs. Floor Space, $69^{\prime \prime} \times 68^{\prime \prime}$.
Dimensions of box for shipment, $56^{\prime \prime} \times 35^{\prime \prime} \times \mathbf{x i}^{\prime \prime}$.
Price includes No. 2 Swivel Vise, change gears, Index plates and tables explaining the use of same, $6^{\prime \prime} 3$-jawed chuck, " E " collet, centre rest, raising block, wrenches, and everything else shown in cut, together with overhead works. boxed and delivered f. o.b. at Providence, R.I.

Price, $\$$
For Arbors, Collets, Tapers, Attachments and List of Tools, see pages 46 to 89.

No. 2
 $23 \mathrm{in} \times 71-.2 \mathrm{in}$ x $171-2 \mathrm{in}$. UNIVERSAL MILLING MACHINE.

With Hand or Power Vertical Feed.

Patented Fel. 14, May 23, 1893; Aug. 29, 1899; Sept. 10, Nov. 12, 1901; Jan. 13, 1903; Others pending.

The table has an automatic longitudinal feed of $23^{\prime \prime}$, an automatic transverse movement of $71-2^{\prime \prime}$ and can be lowered 17 1-2" from centre of spindle.

The centres swing $10^{\prime \prime}$ in diameter and take " $101-2^{\prime \prime}$ in length.

No. 223 in. $\times 7$ 1-2 in. $\times 17$ 1-2 in. UNIVERSAL MILLING MACHINE.

The Spindle has a hole its entire length and runs in bronze boxes provided with means of compensation for wear. The front end is threaded and has a No. 10 taper hole.
The Cone has 4 steps for $3^{\prime \prime}$ belt and is back geared, giving, with 3 speeds of counter, 16 changes of speed direct, from 16 to 318 revolutions per minute and $\&$ reverse, from 17 to 290 revolutions per minute. Speeds in geometrical progression.

The Overhanging Arm is a solid steel bar. Distance from centre of spindle to arm, $5 \quad 1-2^{\prime \prime}$; greatest distance from end of spindle to centre in arbor support, $161 \cdot 2 \prime$. It is clanmped at hoth bearings liy one lever. The arbor support has a hole for bearing for arbor, etc., as well as an aljustable centre.

Arm Braces are furnished, and with these in position, milling can be done to $16^{\prime \prime}$ from face of column.
The Table, including oil pans and channels, is $40^{\prime \prime}$ long, $81-4^{\prime \prime}$ wide, has a working surface $37^{\prime \prime} \times 81 \cdot 4^{\prime \prime}, 2$ T slots $5-s^{\prime \prime}$ wide, an automatic transverse novement of $71.2^{\prime \prime}$ and ran be lowered $171.2^{\prime \prime}$ from centre of spindle. Arc of swing, $2 \mathrm{NO} 0^{\prime}$.

The Elevating Screw is telescopic.
The Feed of table, of $23^{\prime \prime}$, is positive and automatic in either direction. It can be changed be a simple movement of lever on front of saddle, and, being driven from the centre, can be used with table clamped at any angle to 53 degrees either side of zero. There are 20 changes of feedevenly graded from $.003^{\prime \prime}$ to $.120^{\prime \prime}$ to one revolution of spindle. The table feed screw is not splined. A quick return for the table is provided.

The Spiral Head and Foot-stock Centres swing $10^{\prime \prime}$ in diameter and take $191-2^{\prime \prime}$ in length. The head can be set at any angle from 10 degrees below the trorizontal to 5 degrees beyond the perpendicular. The front end of spindle is threaded and has a No. 10 taper hole. The straight hole through spindle, at end of taper, is $11-16^{\prime \prime}$ in diameter. By means of the raising block the head can be set at any angle on table. The foot-stock centre can be raised vertically and set at an angle in a vertical plane.
Differential Indexing provides for all divisions from 1 to 380 .
The Vise swivels and has a graduated base. The jaws are hardened, $51-8^{\prime \prime}$ wide, $11.4^{\prime \prime}$ deep and will open : $3.4^{\prime \prime}$.

The Counter-shaft has 3 friction pulleys $14^{\prime \prime}$ in diameter for $31-2^{\prime \prime}$ belts and should run about 144 to 175 revolutions per minute direct and 160 reverse.

Weight of machine ready for shipment, about 3200 lbs .
Net Weight, about 2585 libs. Floor Space, 77 "i 75 ."
Dimensions of box for shipment, $56^{\prime \prime} \times 36^{\prime \prime} \times 67^{\prime \prime}$.
Price includes No. 2 Swivel Vise, change gears, index plates and tables explaining the use of same, $6^{\prime \prime} 3$-jawed chuck, "El'collet, centre rest, raising block, wrenches, and everything else shown in cut, together with overhead works, boxed and delivered f.o.b.at Providence, R. I.

Price, $\$ \quad$ Price, with Power Vertical Feed, $\$$
For Arbors, Collets, Tapers, Attachments and List of Tools, ses pages 46 to 89.

No. 2-A

$23 \mathrm{in} \times 71-2 \mathrm{in} . \times 171-2 \mathrm{in}$. UNIVERSAL MILLING MACHINE.

1'atented Fell. 14, May 23, 1833; Ang. 29, 1899; Nov. 12, 1901; Jan. 13, 1:003; Others pending.

The table has an automatic longitudinal feed of $23^{\prime \prime}$, an automatic transverse movement of $71-2^{\prime \prime}$ and can be lowered $171-2^{\prime \prime}$ from centre of spindle.

The centres swing $10^{\prime \prime}$ in diameter and take 19 1-2" ln length.

No. 2-A 23 in. $\times 712$ in. $\mathbf{x} 17$ 1-2 in. UNIVERSAL MILLING MACHINE.

The Spindle has a hole its entire length and runs in bronze boxes provided with means of compensation for wear. The front end is threaded and has a No. 10 taper bole. It is driven by a single pulley, $11^{\prime \prime}$ diameter for $3^{\prime \prime}$ belt and is hack geared, giving 16 changes of speed in either ilirection, from 15 to 376 revolutions per minute. Changes obtained by gearing. Speeds in geometrical progression. Driving pulley runs at constant speed.
The Overhanging Arm is a solid steel bar. Distance from centre of spindle to arm, 5 1-2"; greatest distance from end of spindle to centre in arbor support, 16 1-2". It is claminerd at both bearings by onelever. The arbor support has a holefor bearing for arior etc., as well as an adjustable centre.
Arm Braces are furnished and with these in position, milling can be done to $16^{\prime \prime}$ from face of column.
The Table, including oil pans and channels, is 40° long, $81-4^{\prime \prime}$ wide, has a working surface $3 \overline{3}^{\prime \prime} \times 81-4^{\prime \prime}, 2$ T slots. $5-\mathbf{w}^{\prime \prime}$ wide, an automatic transverse movement of $71-2^{\prime \prime}$ and can be lowered $171-2^{\prime \prime}$ from centre of spindle. Are of swing 280°.

The Elevating Screw is telescopic.
The Feed of table, of $23^{\prime \prime}$, is yositive and automatic in either direction. It can be changed by a simple movement of lever on front of saddle and, being driven from the centre, can be used with table clamped at any angle to 53 degrees either side of zero. There are 12 changes of feed in geometrical progression, from $1.2^{\prime \prime}$ to $6^{\prime \prime}$ per minute. Range for small mills, $.001^{\prime \prime}$ "to . $016^{\prime \prime}$ per revolution of spindle; large mills, $.033^{\prime \prime}$ to $.400^{\prime \prime}$. The table feed screw is not splined. A quick return for the table is provided.
The Spiral Head and Foot-stock Centres swing $10^{\prime \prime}$ in diamter and take $191-2^{\prime \prime}$ in length. The head can be set at anyangle from 10 degrees below the horizontal to 5 degrees beyond the perpendicular. The front end of spindle is threaded and has a No. 10 taper hole. The straight hole through spindle, at end of taper, is $11-16^{\prime \prime}$ in diameter. By means of the raising block the head can be set at any angle on table. The foot-stock centre can be raised vertically and set at an angle in a vertical plane.
Differential Indexing provides for all divisions from 1 to 382.

The Vise swivels and has a graduated base. The jaws are hardened, 5 1-8" wide, 1 1.4" deep and will open $23-4^{\prime \prime}$.
The Counter-shaft has 2 friction pulleys $14^{\prime \prime}$ in diameter for $31-2^{\prime \prime}$ belts and should run about $2 \overline{7} \overline{0}$ revolutions per minute in either direction.

Weight of machine ready for shipment, about 3400 lbs.
Net Weight, about 2750 lbs. Floor Space, $77^{\prime \prime} \times 75^{\prime \prime}$.
Dimensions of box for shipment, approximate, $49^{\prime \prime} \times 86^{\prime \prime} \times 67^{\prime \prime}$.
Price includes change gears, index plates and tables ex-
plaining the use of same, $6^{\prime \prime} 3$-jawed chuck, No. 2 Swivel Vise, "E"collet, centre rest, raising block, wrenches and every. thing else shown in cut, together with overhead works, boxed and delivered f. o.b. at Providence, R. I.

Price, $\$ \quad$ Price, with Power Vertical Feed, $\$$
For Arbors, Collets, Tapers, Attachments and List of Tools, see pages 46 to 89.

No. 3

$28 \mathrm{in}$.x 8 1-2 in. $x 19$ in. UNIVERSAL MILLING MACHINE.

Patented Feh. 14, May 23, 1803 ; Aug. 29, 1899; Sept. 10, Nov. 12, 1901; Jan. 13, 1!03; Others pending.

The table has automatic feeds as follow longitudinal, $28^{\prime \prime}$; transverse, 8 1-2"; vertical, $19^{\prime \prime}$.

The centres swing $12^{\prime \prime}$ in diameter and take $26^{\prime \prime}$ in length.

No. 328 in. $x 8$ 1-2 in. $x 19$ in.

UNIVERSAL MILLING MACHINE.

The Spindle has a hole its entire length and runs in bronze boxes provided with means of compensation for wear. The front end is threaded and has a No. 11 taper hole.

The Cone has 4 steps for $31.2^{\prime \prime}$ belt and is back geared, giving with 3 speeds of counter, 16 changes of speed direct, from 13 to 392 ; and 8 reverse, from 14 to 853 revolutions per minute. Speeds in geometrical progression.

The Overhanging Arm is a solid steel bar. Distance from centre of spindle to arm, $63-\mathrm{s}^{\prime \prime}$; greatest distance from end of spindle to centre in arbor support, $181 \cdot 2^{\prime \prime}$. It is clamped at both bearings by one lever. The arbor support has a hole for bearing for arbor etc., as well as an adjustable centre.

Arm Braces are furnished and with these in position, milling can be done to $18^{\prime \prime}$ from face of column.

The Table, including oil pans and channels, is $501-4^{\prime \prime}$ long, $10^{\prime \prime}$ wide, has a working surface $451-2^{\prime \prime} \times 10^{\prime \prime}, 3$ ' T slots $5.8^{\prime \prime}$ wide, an automatic transverse movement of $81 \cdot 2^{\prime \prime}$ and an automatic vertical movement of 19". Arc of swing 280°.

The Elevating Screw is telescopic.
The Feed of table, of $28^{\prime \prime}$, is positive and automatic in either direction. It can be changed by a simple movement of lever on front of saddle, and, being driven from the centre, can be used with table clamped at any angle to 50 degrees either side of zero. There are 20 changes of feed, evenly graded from $.004^{\prime \prime}$ to $.160^{\prime \prime}$ to one revolution of spindle. The table feed screw is not splined. A quick return for the table is provided.

The Spiral Head and Foot-stock Centres swing 12 " in diameter and take $26^{\prime \prime}$ in length. The head can lee set at any angle from 10 degrees below the horizontal to 5 degrees beyond the perpendicular. The front end of spindle is threaded and has a No. 11 taper hole. The straight hole through spindle at end of taper is $11-4^{\prime \prime}$ in diameter. By means of the raising block the head can be set at any angle on table. The foot-stock centre can be raised vertically and set at an angle in a vertical plane.

Differential Indexing provides for all divisions from 1 to 380 .

The Vise swivels and has a graduated base. The jaws are hardened, $61-8^{\prime \prime}$ wide, $19-16^{\prime \prime}$ deep and will open $35.8^{\prime \prime}$.

The Counter-shaft has 3 friction pulleys, two $12^{\prime \prime}$ and one $14^{\prime \prime}$ in diameter, for $31-2^{\prime \prime}$ and 4^{\prime} belts and should run about 198 and 158 revolutions per minute direct and 178 reverse.

Weight of machine ready for shipment, about 4825 lbs .
Net Weight, about 4030 lbs . Floor Space, 93 " $\mathrm{x} 86^{\prime \prime}$.
fimensions of box for shipment, $65^{\prime \prime} \times 41^{\prime \prime} \times 73^{\prime \prime}$.
Price includes No. 3 Swivel Vise, change gears, index plates and tables explaining the use of same, 8 " 3 -jawed chuck, "G" collet, centre rest, raising block, wrenches, and everything else shown in cut, together with overhead works, boxed and delivered f. o.b. at Providence, R. I.

Price, $\$$
For Arbors, Collets, Tapers, Attachments and List of Tools, see pages 46 to 89.

No. 4
 33 1-2 in. $\times 9$ 1-2 in. $\times 19$ in. UNIVERSAL MILLING MACHINE.

Patented Fel. 14, May 23, 1893; Aug. 29, 1899; Sept. 10, Nov. 12, 1901 ; Jan. 13, 1903; Others pending.

The table has automatic feeds as follows: longitudinal, 33 1-2"; transverse, 9 1-2"; vertical, $19^{\prime \prime}$.

The centres swing $14^{\prime \prime}$ in diameter and take $32^{\prime \prime}$ in length.

18

No. $4331-2$ in. $\times 91-2 \mathrm{in}$.x 19 in.

 UNIVERSAL MILLING MACHINE.The Spindle has a hole its entire length and runs in bronze boxes provided with means of compensation for wear. The front end is threaded and has a No. 11 taper hole.
The Cone has 4 steps for 3 1-2" belt and is back geared, giving, with 3 speeds of counter, 16 changes of speed direct, from 10 to 452 ; and 8 reverse, from 12 to 386 revolutions per minute. Speeds in geometrical progression.
The Overhanging Arm is a solid steel bar. Distance from centre of spindle to arm, $71-4$ "; greatest distance from end of spindle to centre in arbor support, $21^{\prime \prime}$. It is clamped at both bearings ly one lever. The arbor support has a hole for bearing for arbor etc., as well as an adjustable centre.

Arm Braces are furnished and with these in position, milling can be done to $191-2^{\prime \prime}$ from face of column.

The Table, including oil pans and channels, is $593-4$ " long, 11 1-2" wide, has a working surface $541-2^{\prime \prime} \times 111 \cdot 2^{\prime \prime}, 3$? slots, 3 -4" wide, an automatic transverse movement of 9 1.2", an automatic vertical movement of $19{ }^{\circ}$. Arc of swing, 276°.

The Elevating Screw is telescopic.
The Feed of table, of $331-2$, is positive and automatic in either direction. It can be changed by a simple movement of lever on front of saddle, and, being driven from the centre, can be used with ta ble clamped at any angle to 48 degrees either side of zero. There are 20 changes of feed, evenly graded from $.004^{\prime \prime}$ to $.200^{\prime \prime}$ to one revolution of spindle. The table feed screw is not splined. A quick return for the table is provided.

The Spiral Head and Foot-stock Centres swing $14^{\prime \prime}$ in diameter and take $32^{\prime \prime}$ in length. The head can be set at any angle from 10 degrees below the horizontal to 5 degrees beyond the perpendicular. The frontend of spindle is threaded and has a No. 11 taper hole. The straight hole through spindle atend of taper is 11-4" in diameter. By means of the raising block the headcan be setatany angle on table. The foot-stock centre can be raised vertically and set at an angle in a vertical plane.

Differential Indexing provides for all divisions from 1 to 380.

The Vise swivels and has a graduated base. The jaws are hardened, 6 1-8" wide, 19-16" deep and will open 3 5-8".

The Counter-shaft has 3 friction pulleys, two $14^{\prime \prime}$ and one $16^{\prime \prime}$ in diameter for $4^{\prime \prime}$ belts, and should run about 225 and 175 revolutions per minute, direct; and 200 reverse.

Weight of machine ready for shipment, about 6000 lbs .
Net Weight, about 5000 lbs. Floor Space, $110^{\prime \prime} \times 92^{\prime \prime}$.
Dimensions of box for shipment, $73^{\prime \prime} \times 46^{\prime \prime} \times 72^{\prime \prime}$.
Price includes No. 3 Swivel Vise, change gears, index plates, and tables explaining the use of same, 9 " 3 -jawed chuck, " G " collet, centre rest, raising block, wrenches, and everything else shown in cut, together with overhead works, boxed and delivered f. o. b. at Providence, R. I.

Price, $\$$
For Arbors, Collets, Tapers, Attachments and List of Tools, see pages 46 to 89.

DIMENSIONS OF PLAIN MILLING MACHINES.

No. of Machine.	00	0	1	1 B	2	2 B
No. of Taper Hole in Spindle.	9	9	10	10	10	10
Distance from Centreof Spindle to O. H. Arm.	$51.8{ }^{\prime \prime}$	$51.8^{\prime \prime}$	$51 \cdot 2^{\prime \prime}$	$51.2^{\prime \prime}$	$51-2$	$51.2^{\prime \prime}$
Greatest Distance from End of Spindle to Centre in O. H. Arm or Arbor Support.	10 1-2"	$101.2^{\prime \prime}$	$16^{\prime \prime}$	$161 \cdot 2^{\prime \prime}$	$16^{\prime \prime}$	161-2"
Back Geared.	No	No	No	No	Yes	Yes
Working Surface of Table.	$\begin{gathered} 16^{\prime \prime} \mathrm{x} \\ 51 \cdot 2^{\prime \prime} \end{gathered}$	$200^{\prime \prime} \mathrm{x}$ $8^{\prime \prime}$	$32^{\prime \prime} \mathrm{x}$ $10^{\prime \prime}$	$32^{\prime \prime} \mathrm{x}$	$34^{\prime \prime} \mathrm{x}$ $10^{\prime \prime}$	$\begin{aligned} & 34^{\prime \prime} \mathrm{x} \\ & 10^{\prime \prime} \end{aligned}$
Transverse Movement of Table.	$41.4^{\prime \prime}$	4 1-4"	$61.2^{\prime \prime}$	$71.2^{\prime \prime}$	$61 \cdot 2^{\prime \prime}$	$71 \cdot 2^{\prime \prime}$
Greatest Distance from Centre of Spindle to Top of Table.	$71.2^{\prime \prime}$	$141.2^{\prime \prime}$	$181.2^{\prime \prime}$	$18^{\prime \prime}$	18 1-2"	$18^{\prime \prime}$
Length of Automatic Feed.		$16^{\prime \prime}$	$24^{\prime \prime}$	$24^{\prime \prime}$	$28^{\prime \prime}$	$28^{\prime \prime}$
No. of Changes of Feed.		S	S	12	12	12
Variations in Feed to one Rey. of spindle.		$\begin{gathered} .005^{\prime \prime} \\ \text { to } \\ .11^{\prime \prime} \end{gathered}$	$\begin{gathered} .005)^{\prime \prime} \\ 10 \\ .09^{\prime \prime} \end{gathered}$	$\begin{gathered} .005^{\prime \prime} \\ \text { to } \\ .01^{\prime \prime} \end{gathered}$	$\begin{gathered} .005^{\prime \prime} \\ \text { to } \\ .12^{\prime \prime} \end{gathered}$	$\begin{gathered} .005^{\prime \prime} \\ \text { to } \\ .100^{\prime \prime} \end{gathered}$
$\text { Net Weight. }\left\{\begin{array}{l} \text { R. F. } \\ \text { S. F. } \end{array}\right.$	940	$\begin{aligned} & 975 \\ & 975 \end{aligned}$	$\begin{aligned} & 1700 \\ & 1760 \end{aligned}$	2080	$\begin{aligned} & 2000 \\ & 2000 \end{aligned}$	2400
Floor Space.	$\begin{gathered} 36^{\prime \prime} x \\ 36^{\prime \prime} \end{gathered}$	$\begin{gathered} 57^{\prime \prime} \mathrm{x} \\ 42^{\prime \prime} \end{gathered}$	$\begin{aligned} & 76^{\prime \prime} x \\ & 59^{\prime \prime} \end{aligned}$	$\begin{gathered} 76^{\prime \prime} \mathrm{x} \\ 51^{\prime \prime} \end{gathered}$	$\begin{gathered} 86^{\prime \prime} \mathrm{x} \\ 59^{\prime \prime} \end{gathered}$	$\begin{gathered} 87^{\prime \prime} \mathrm{x} \\ 55^{\prime \prime} \end{gathered}$
Price.						

DIMENSIONS OF
 PLAIN MILLING MACHINES.

No. of Machine.	3	4	5		13	1313	24
No. Taper Hole in Spindle.	11	11	12	10	10	10	11
Distance from Centre of Spindle to 0 . H. Arm.	$63-8{ }^{\prime \prime}$	$71.4 \prime$	83.	3.16"	27.8	311.16	$71.4{ }^{\prime \prime}$
Greatest Dis. tance from end of spindle to Centre in Arbor Support.	$22^{\prime \prime}$	$21^{\prime \prime}$	$28^{\prime \prime}$	9 3.4"	11"	121.2	26 1-2"
Back Geared.	Yes	Yes	Yes				
Working Surface of Table.	$\underset{12^{\prime \prime} x}{y^{\prime \prime}}$	$\begin{gathered} 48^{\prime \prime} x \\ 14^{\prime \prime} \end{gathered}$	$\begin{gathered} 54^{\prime \prime \prime} \mathrm{x} \\ 16^{\prime \prime} \end{gathered}$	$\underset{6^{\prime \prime}}{299^{\prime \prime}}$	$\underset{8^{\prime \prime}}{27^{\prime \prime} x}$		$\operatorname{lic}_{174^{\prime \prime}}$
Transverse Movement of Table or Spindle.	$8^{\prime \prime}$	8 3-4"	9 3-4"	5-8"	3"	$2^{\prime \prime}$	12"
Greatest Distance from Centre of Spindle to top of Table.	19 3-4"	$20^{\prime \prime}$	19 1-2"	$71 \cdot 2^{\prime \prime}$	$93-8^{\prime \prime}$	$9{ }^{\prime \prime}$	$19{ }^{\prime \prime}$
Length of Automatic Feed.	34"	42"	$48^{\prime \prime}$	$2 i^{\prime \prime}$	$15^{\prime \prime}$	$30^{\prime \prime}$	$72^{\prime \prime}$
No. of Changes of Feed.	12	12	20	4	$4 \cdot$	4	20
Variations in		. 008 " to					
Feed ta one rev.ofSpindle	${ }^{.1988^{\prime \prime}}$.280 ${ }^{\prime \prime}$	${ }^{3} .350^{\prime \prime}$.05. ${ }^{\prime \prime \prime}$	${ }^{.06666^{\prime \prime}}$	$\mid .062^{\prime \prime}$	${ }^{.000010}$
NetWeight. 1 lbs .	3690	4340	7000	1780	2550	2315	5925
Floor Space. Price.	$\stackrel{84^{\prime \prime} \mathbf{x}}{75^{\prime \prime}}$	$\left\|\begin{array}{c} 102^{\prime \prime} \\ 81^{\prime \prime} \end{array}\right\|$	$\underset{98^{\prime \prime \prime}}{115^{\prime \prime}}$	$\begin{gathered} 63^{\prime \prime \prime} \mathrm{x} \\ 466^{\prime \prime} \end{gathered}$	$\begin{gathered} 49^{\prime \prime \prime} \mathrm{x} \\ 47^{\prime \prime} \end{gathered}$	$\left\lvert\, \begin{array}{c\|} 72^{\prime \prime} \mathrm{x} \\ 51 \cdot 2^{\prime \prime} \end{array}\right.$	$\begin{aligned} & 59^{\prime \prime} x \\ & 153^{\prime \prime} \end{aligned}$

No. 00
7 in. and 4 1-4 in. $\times 4$ 1-4 in. $\times 7$ 1-2 in. HAND MILLING MACHINE.

The table has a longitudinal movement of $7^{\prime \prime}$, a transverse movement of $41-4^{\prime \prime}$ and can be lowered $71-2^{\prime \prime}$ from centre of spindle.

No. 00

7 in. and 4 1-4 in. $\times 4$ 1-4 in. $\times 7$ 1-2 in. HAND MILLING MACHINE.

The Spindle has a hole its entire length and runs in bronze boxes provided with means of compensation for wear. The front end has a No. 9 taper hole.

The Cone has 4 steps, the largest $9^{\prime \prime}$ diameter for $2^{\prime \prime}$ belt.
The Overhanging Arm can be removed or turned out of the way. Distance from centre of spindle to arm, $51-x^{\prime \prime}$; greatest distance from end of spindle to centre in arm, 10 1-2".

The Table, including oil pans and channels, is $20^{\prime \prime}$ long, 7 $1.2^{\prime \prime}$ wide, has a working surface $16^{\prime \prime} \times 51-4^{\prime \prime}$, 1 T slot $5-8^{\prime \prime}$ wide, a transverse movement of $414^{\prime \prime}$ and can be lowered $71.2^{\prime \prime}$ from centre of spindle.

The Feed of table, of $41-4^{\prime \prime}$, is obtained by the extreme throw of the lever at any setting. The table rack allows a longitudinal movement of $7^{\prime \prime}$.

An Adjustable Dial, graduated to read to thousandths of an inch, indicates the transverse movement of the table.
The Vertical Movement, of $7 \mathbf{1 . 2 ^ { \prime \prime }}$, is operated by a lever on the front of the knee. An adjustable stop is provided. The knee saddle and table are counter-balanced by weights inside of the column.

The Vise is flanged and has hardened jaws $41.8^{\prime \prime}$ wide, $11-16^{\prime \prime}$ deep and will open $2^{\prime \prime}$.

The Counter-shaft hás 1 tight and 2 loose pulleys $10^{\prime \prime}$ in diameter for $21-2^{\prime \prime}$ belts and should run about 250 revo. lutions per minute.

Weight of machine ready for shipment, about 1300 lbs.
Net Weight, about 940 lbs .
Floor Space, $36^{\prime \prime} \times 36^{\prime \prime}$.
Dimensions of box in which machine is shipped, about 41" $\times 29^{\prime \prime} \times 61^{\prime \prime}$.

Price includes No. 1 Flanged Vise, "C" collet, oil can, wrenches and everything else shown in cut, together with overhead works, boxed and delivered f. o. l. at Providence, R. I,

For Arbors, Collets, Tapers, Attachmerts and List of Tools, see pages 46 to 89.

No. 0

$16 \mathrm{in} . \times 41-4 \mathrm{in} . \times 141-2 \mathrm{in}$. PLAIN MILLING MACHINE.

Screw Feed Machine Patented May 23, 1893; Aug. 2:), 1899; Jan. 13, 1903.

Cut Shows Rack Feed Machine.

The table has an automatic longitudinal feed of $10^{\prime \prime}$, a transverse movement of $41-4^{\prime \prime}$, and can be lowered $141-2^{\prime \prime}$ from centre of spindle.

19

No. 0
 16 in. $\times 41-4$ in. $\times 141-2 \mathrm{in}$. PLAIN MILLING MACHINE.

With Rack or Screw Feed.

The Spindle has a hole its entire length and runs in bronze boxes provided with means of compensation for wear. The front end has a No. 9 taper hole.

The Cone has 4 steps for $21.4^{\prime \prime}$ belt, giving 4 changes of speed direct and 4 regerse from 90 to 360 revolutions $p e r$ minute.
The Overhanging Arm can be removed or turned out of the way. Distance from centre of spindle to arm, $51-\mathbf{s}^{\prime \prime} ; \mathrm{great}$. est distance from end of spindle to centre in arm, $101 \cdot 2$ ".
The Table, including oil pans and channels, is $25^{\prime \prime}$ long, 5^{-7} for Screw Feed Machine, 8 " wide, has a working surface 2 l $^{\prime \prime \prime}$ $\times 8^{\prime \prime}, 3 \mathrm{~T}$ slots $1.2^{\prime \prime}$ wide, a transverse movement of $41.4^{\prime \prime}$ and can be lowered $141-2^{\prime \prime}$ from centre of spindle.
The Feed of table, of $\mathbf{1 6}^{\prime \prime}$, is automatic in either direction and can be automatically released at any point. There are 8 changes of feed varying from . 005 " to .11 " to one revolution of spindle.

Adjustable Dials graduated to read to thousandths of an Inch indicate the transverse and vertical movements of table. Machine with Screw Feed has dials, graduated toread to thousandths of an inch, for longitudinal feed.

The Vise, with Rack Feed Machine, is flanged and has hardened jaws 4 1-8" wide, 1 1-16" deep and will open $2^{\prime \prime}$.
The Vise, with Screw Feed Machine, swivels and has a graduated base. The jaws are hardened, $51.8^{\prime \prime}$ wide, 1 1.4" deep and will open 2 3-4".

The Counter-shaft has 1 tight and 2 loose pulleys 12" in diameter for $21-2^{\prime \prime}$ belt, and should run about 180 revolutions per minute in either direction.
Weight of machine ready for shipment: Rack Feed, about 1260 lbs.; Screw Feed, about 1375 lbs.
Net Weight, about 970 lbs.
Floor Space, $577^{\prime \prime} \times 42$ ".
Dimensions of boxes in which machines are shipped, Rack Feed, 40 "× $38^{\prime \prime} \times 61^{\prime \prime}$; Screw Feed, $39^{\prime \prime} \times 38^{\prime \prime} \times 61^{\prime \prime}$.
Price includes vise, No. 1 Flanged for Rack Feed, or No. 2 Flanged for Screw Feed, oil can, "C" collet, wrenches and everything else shown in cut, together with overhead works boxed and delivered f. o. b. at Providence, R.I.
Price, with Rack Feed, \$
Price, with Screw Feed, \$
For Arbors, Collets, Tapers, Attachments and List of Tools, see pages 46 to 89.

20

No. 1

24 in. $\times 6$ 1-2 in. $\times 18$ 1-2 in. PLAIN MILLING MACHINE.

Screw Feed Machine Patented May 23, 1898: Aug. 29, 1899; Jan. 1, 1903.

Cut Shows Screw Feed Machine.

The table has an automatic longitudinal feed of $24^{\prime \prime}$, a transverse movement of $61-2^{\prime \prime}$, and can be lowered $181-2^{\prime \prime}$ from centre of spindle.

No. 1 24 in. $\times 6$ 1-2 in. $\times 18$ 1-2 in. PLAIN MILLING MACHINE.

With Rack or Screw Feed.

The Spindle has a hole its entire length and rups in bronze boxes provided with means of compensation for wear. The front end is threaded and has a No. 10 taper hole.

The Cone has 4 steps for $3^{\prime \prime \prime}$ belt, giving, with 2 speeds of counter, 4 changes of speed direct and 4 reverse, from 65 to 292 revolutions per minute; or 8 direct, from 56 to 333 revolutions per minute.

The Overhanging Arm is a solid steel bar. Distance from centre of spindle to arm, $51-2^{\prime \prime}$; greatest "listance from end of spindle to centre in arbor support, $16^{\prime \prime}$. The arbor support has a hole for bearing for outer end of arbor etc., as well as an adjustable centre.
Arm Braces are furnished and with these in position mill. ing can be done to $13^{\prime \prime}$ from face of column.

The Table, including oil pans and channels, is $38^{\prime \prime}$ long, $10^{\prime \prime}$ wide, and has a working surface $32^{\prime \prime} \times 10^{\prime \prime}, 3$ T slots $5 \cdot 8^{\prime \prime}$ wide, a transverse movement of $61-2^{\prime \prime}$ and can be lowered 18 1-2' from centre of spindle.

The Elevating Screw is telescopic.
The Feed of table, of $24^{\prime \prime}$, is automatic in either direction and can be automatically released at any point. There are 8 changes of feed, varying, on the Rack Feed Machine, from $.007^{\prime \prime}$ to $.12^{\prime \prime}$ and on the Screw Feed Machine from . $005^{\prime \prime}$ to .09 " to one revolution of spindle.

Adjustable Dials, graduated to read to thousandths of an Inch, indicate the transverse and vertical movements of table. Machine with Screw Feed has a dial, graduated to read to thousandths of an inch, for longitudinal feed.

The Vise, with Rack Feed Machine, is flanged and has hardened jaws 5 1-8" wide, 1 1-4" deep and will open 2 3-4".
The Vise, with Screw Feed Machine, swivels and has a graduated base. The jaws are hardened, 5 1-8" wide, $11-4^{\prime \prime}$ deep, and will open 2 3-4".

The Counter-shaft has 2 tight and 2 loose pulleys $14^{\prime \prime}$ in diameter for $31-2^{\prime \prime}$ belt and should run about 105 revolutions per minute in either direction.

Weight of machine ready for shipment: Rack Feed, about 2200 lbs. ; Screw Feed, about 2320 lbs.
Net Weight, Rack Feed, about 1700 lbs.; Screw Feed, about 1790 lbs.

Floor Space, 76" x 59".
Dimensions of box in which machine is shipped, $50^{\prime \prime} x$ $34^{\prime \prime} \times 63^{\prime \prime}$.

Price includes vise, No. 2 Flanged for Rack Feed, or No. 2 Swivel for Screw Feed, oil can, "E" collet, wrenches, and everything else shown in cut, together with overhead works, boxed and delivered f. o. b. at Providence, R. I.

Price, with Rack Feed, $\$$
Price, with Screw Feed, $\$$
For Arbors, Collets, Tapers, Attachments and List of. Tools, see pages 46 to 89.

No. 1-B

24 in. $x 71$ 1-2 in. $x 18$ in.
 PLAIN MILLING MACHINE.

Patented May 23, 1893; Aug. 23, 1899; Sept. 10, 1901; Jan. 13, 1903; Others pending.

The table has an automatic longitudinal feed of $24^{\prime \prime}$, an automatic transverse movement of $71-2^{\prime \prime}$ and can be lowered $18^{\prime \prime}$ from centre of spindle.

88

No. 1-B

24 in. $\times 7$ 1-2 in. $\times 18$ in. PLAIN MILLING MACHINE.

The Spindle has a hole its entire length and runs in bronze hoxes provided with means of compensation for wear. The front end is threaded and has a No. 10 taper hole.
The Cone has 4 steps for $3^{\prime \prime}$ belt, giving with 3 speeds of counter, 8 changes of speed direct from 56 to 353 revolutions per minute and 4 reverse froin 65 to 242 revolutions per minute. Speeds in geometrical progression.
The Overhanging Arm is a solid steel bar. Distance from centre of spindle to arm, $51-2^{\prime \prime}$; greatest distance from end of spindle to centre in arbor support, $161-2^{\prime \prime}$. The arbor support has a hole for bearing for outer end of arbor etr., as well as an adjustable centre. It is clamped at both bearings by one lever at the front of machine.

Arm Braces are furnished and with these in position mill. ing can be done to $16^{\prime \prime}$ from face of column.

The Table, including oil pans and channels, is 39 1.2" long, $10^{\prime \prime}$ wide, has a working surface $32^{\prime \prime} \times 10^{\prime \prime}, 3 \mathrm{~T}$ slots $5 \cdot 8^{\prime \prime}$ wide. a transverse movement of $71-2^{\prime \prime}$ and can le lowered $1 \mathrm{~s}^{\prime \prime}$ from centre of spindle.

The Elevating Screw is telescopic and does not pass helow the base of the machine.

The Feed of table, of $24^{\prime \prime}$, is positive and automatic in either direction. It can be changed by a simple movement of a lever on the front of the saddle. It is driven by a chain and sprocket wheels. There are 12 changes of feed obtained by means of change gears varying from . $005^{\prime \prime}$ to $.100^{\prime \prime}$ to one revolution of spindle.

Adjustable Dials, graduated to read to thousandths of an inch, indicate the longitudinal, transverse and vertical movements of table..

The Vise swivels and has a graduated base. The jaws are hardened, 5 1-8" wide, 11-4" deep and will open $23-4^{\prime \prime}$.

The Counter-shaft has 3 friction pulleys $14^{\prime \prime}$ in diameter for $31-2^{\prime \prime}$ belts and should run about 90 and 120 revolutions per minute direct and 105 reverse.

Weight of machine ready for shipment, about 2675 lbs.
Net Weight, about 2080 lbs.
Floor space, $76^{\prime \prime} \times 51^{\prime \prime}$.

- Dimensions of box in which machine is shipped, $53^{\prime \prime} \mathrm{x}$ $34^{\prime \prime} \times 67^{\prime \prime}$.

Price includes No. 2 Swlvel Vise, oil can, "E" collet, wrenches and everything else shown in cut, together with overhead works, boxed and बelivered f.o.b. at Providence, R. I.

Price, \$
For Arbors, Collets, Tapers, Attachments and List of Tools, see pages 46 to 89.

No. 2

28 in. $\times 1-2$ in. $\times 181-2$ in. PLAIN MILLING MACHINE.

Screw Feed Machine Patented

May 28. 14se; Aug. 29, 1839; Jan. 13, 1903.

CUT SHOWS SCREW FEED MACHINE.
The table has an antomatic longitudinal feed of $28^{\prime \prime}$, a transverse movement of $61-2^{\prime \prime}$, and can be lowered 18 1-2' from centre of spindle.

No. 2

 28 in. $\times 61-2$ in. $\times 181-2$ in.

 28 in. $\times 61-2$ in. $\times 181-2$ in. PLAIN MILLING MACHINE.

 PLAIN MILLING MACHINE.}

With Rack or Screw Feed.

The Spindle has a hole its entire length and runs in bronze boxes provided with means of compensation for wear. The front end is threaded and has a No. 10 taper hole.

The Cone has 4 steps for 3^{\prime} belt and is back geared giving, with 2 speeds of counter, s changes of speed direct and 8 reverse, from 17 to 290 revolutions per minute: or 16 dirert, from 16 to 318 revolutions per minute. Speeds in geomet: rical progression.

The Overhanging Arm is a solid steel bar. Distance from centre of spindle to arm, $51-2^{n}$; greatest distance fromend of spindle to centre in arbor support, $\mathbf{1 6}^{\prime \prime}$. It is clamperl at both bearings by one lever. The arbor support has a hole for bearing for arbor, etc., as well as an adjustable centre.

Arm Braces are furnished, and with these in position, milling can be done to $131-2^{\prime \prime}$ from face of column.

The Table, including oil pans and channels, is 40° long, 10 1-4" wide, has a working surface $34^{\prime \prime} \times 10^{\prime \prime}, 3 \mathrm{~T}$ slots $5-8^{\prime \prime}$ wide, a transverse movement of $61.2^{\prime \prime}$ and can be lowered $181 \cdot 2^{\prime \prime}$ from centre of spindle.

The Elevating Screw is telescopic.

The Feed of table, of $2 x^{\prime \prime}$, is automatic in elther lirec. tion and can be automatically released at any polnt. There are 12 changes of feed varying, on the Rack Feed Machine from . $006^{\prime \prime}$ to $.13^{\prime \prime}$, and on the Screw Feed Machine from $.005^{\prime \prime}$ to $.12^{\prime \prime}$ to one revolution of spindle.

Adjustable Dials, graduated to read to thousandths of an inch, indicate the transverse and vertical movements of table. Machine with Screw Feed has dials, graduated to read to thousandths of an inch, for longitudinal feed.

The Vise, with Rack Feed Machine, is flanged and has hardened jaws $61-8^{\prime \prime}$ wide, $19-16^{\prime \prime}$ deep, and willopen 3 5.8"'.
The Vise, with Screw Feed Machine, swivels and has a graduated base. The jaws are hardened, $51 \delta^{\prime \prime}$ wide, 1 1-4" deep, and will open $23-4^{\prime \prime}$.
The Counter-shaft has 2 tight and 2 loose pulleys $14^{\prime \prime}$ in diameter for $31.2^{\prime \prime}$ belts and should run about 160 revolutions per minute in either direction.

Weight of machine ready for shipment: about 2700 lbs .
Net Weight, about 2175 lbs.
Floor Space, Rack Feed Machine, 68"x 57"; Screw Feed Machine, $86^{\prime \prime}$ x 59 ".
Dimensions of box in which machine is shipped, $50{ }^{\prime \prime} \times 34{ }^{\prime \prime}$ $\times 63$ ".

Price includes vise, No. 3 Flanged for Rack Feed or No. 2 Swivel for Screw Feed, oil can, "E" collet, wrenches and everything else shown in cut, together with overhead works, boxed and delivered f. \mathbf{o}. b . at Providence, R . I.

Price, Rack Feed, $\$$ Price, Screw Feed, $\$$
For Arbors, Collets, Tapers, Attachments and List of Roote gee paces 46 to 89 .

No. 2-B

$28 \mathrm{in} \times$.7 1-2 in. $x 18$ in. PLAIN MILLING MACHINE.

Pratentext May wi. 1seo; Aug. 2.l, 1s99; Sept. 10, 1901; Jan. 13, 1903: Wthers pentling.

The table has ansutomatic longitudinal feed of 心", an antomstic transerse movement of © $1-\because^{\prime \prime}$ and an autcmatic va" Heed of 18^{n}.

No. 2-B

$28 \mathrm{in} . \times 71-2 \mathrm{in}. \times 18 \mathrm{in}$. PLAIN MILLING MACHINE.

The Spindle has a hole its cutire length and runs in bronie boxes provided with means of compensation for wear. The front end is threaded and has a No. Io tipper hole.
The Cone has 4 steps for $3^{\prime \prime}$ belt and is back geared, giving with 3 speeds of counter, 16 changes of apeed direct from 16 to 318 revolutions per minute and \& reverse from $1 ;$ to 290 revolutions per minute. Speeds in geometrical progres. sion.

The Overhanging Arm is a solid steel bar. Distance from centre of spindle to arm, $51 \cdot 2^{\prime \prime}$; greatest distance from cond of spindle to centre in arhor support, 16 1-2". It is clamped at both bearings by one lever. The arior support has a hole for bearing for arbor etc., as well as an adjustathe. centre.
Arm Braces are furnished and with these in positio:a, mill. ing can be done to $16^{\prime \prime}$ from face of column.

The Table, including oil pans and channels, is $40^{\prime \prime}$ lons, $10^{\prime \prime}$ wide, has a working surface $34^{\prime \prime} \times 10^{\prime \prime}, 3 \mathrm{~T}$ slots, $5 \cdot s^{\prime \prime}$ side, an automatic transverse movement of $71-2^{\prime \prime}$ and canl le lowered $18^{\prime \prime}$ from centre of spindle.

The Elevating Screw is telescopic and docs not pass below the base of the machine.

The Feed of table, of $28^{\prime \prime}$, is positive and automatic in either direction, screw driven and can be changed by a simple movement of lever on front of saddle. It is driven hy a chain and sprocket wheel. There are 20 changes of fied obtained by means of change gears varying from . $0033^{\prime \prime}$ to $.120^{\prime \prime}$ to one revolution of spindle.
Adjustable Dials graduated to read to thousandths of an inch indicate the longitudinal, transverse and vertical movements of table.

The Vise swirels and has a graduated hase. The jaws are hardened, $51-8^{\prime \prime}$ wide, $11-4^{\prime \prime}$ deep and will open $23.4^{\prime \prime}$.
The Counter-shaft has 3 friction pulle $\& 1 t^{\prime \prime}$ in diameter for $31-2^{\prime \prime}$ belts and should run about 144 and 175 revolutions per minute direct, and 160 reverse.
Weight of machine ready for shipment, :hout 3000 lbs .
Net Weight, about 2435 Hbs .
Floor Space, $87^{\prime \prime} \times 55^{\prime \prime}$.
Dimensions of box for shipment, $50^{\prime \prime} \times 34^{\prime \prime} \times 63^{\prime \prime}$.
Price includes No. 2 Swivel Vise, " E " collet, wrenches and everything else shown in cut, together with overhead works, boxed and delivered f. o.b.at Providence, R.I.

Price, $\$$

For Arbors, Collets, Tapers, Attachments and List, of Tools, see pages 46 to 89.

No. 3

34 in. $x 9$ in. $193-4$ in. PLAIN MILLING MACHINE.

N.rew Feed Machine Patented Feb. 6, 1900.

Ract Feed Machine Patented Jan. 18, 1898; Feb. 6, 1900. Others pending.

 … ,i. 1p sund ean be

No. 3

34 in. $\times 9$ in. $\times 193$-4 in.

PLAIN MILLING MACHINE.

With Rack or Screw Feed.

The Spindle has a hole its entire length and runs in bronze boxes provided with means of compensation for wear. The front end is threaded and has a No. 11 taper hole.
The Cone has 4 steps for 3 1-2" leit and i- back geared, giving, with 2 speeds of counter. 16 chanses of speed, from 13 to $3: 2$ revolutions per minute. Speeds in geometrical progression.
The Overhanging Arm is a solid steel har. Diatance frum centre of spindle to arm, 6 3-c; greate-t diatance from end of spindle to centre in arior support, 2? . It io clamperl at both bearings by one lever. The artior -upport has a hole for bearing for arbor etc., as well as an adjuistable centre.

Arm Braces are furnished, and with the ee in pusition, milling can be done to 20° from face of column.
The Table, includiug oil pans and channets, is 50° long,
 $5.8^{\prime \prime}$ wide, a transverse movement of 9 , and can be low. ered $193-4$ " from centre of spindle.

The Elevating Screw is telescopic.
The Feed of table, of $34^{\prime \prime}$, is automatic in either direction and can be automatically released at any point. It is driven direct from the spindle by a chain and sprocket whetle. There are 20 changes of feed, obtained by means of change gears, varying from .005" to .200" to one revolution of spindle. A fine hand feed is also provided. When the feed is automatically released, the table remains locked in position.
Adjustable Dials graduated to read to thousandths of an inch indicate the transverse and vertical movements of table.

The Vise is flanged and has hardened jaws $61-s^{\circ}$ wide, 1 9-16" deep, and will open 3 5-8".
The Counter-shaft has 2 tight and 2 loose pullevs, 14 "and $18^{\prime \prime}$ in diameter for $4^{\prime \prime}$ belts, and should run about 198 and 158 revolutions per minute.

Weight of machine ready for shipment about 4420 liss.
Fet Weight, about 36.5 Ibs.
Floor Space, $84^{\prime \prime}$ x $63^{\prime \prime}$.
Dimensions of box in which machine is shipped, $65^{\prime \prime} \times 44^{\prime \prime}$ $\times 71^{\prime \prime}$.
Price includes No. 3 Flanged Vise, oil can, " G " collet, wrenches, and everything else shown in cut, together with overhead works, boxed and delivered f. o. b. at Providence, R. 1 .

Price, Rack or Screw Feed, \$
With Pump,
For Arbors, Collets, Tapers, Attachments and List of Tools, see pages 46 to 89.

No. 4
42 in. $\times 83-4$ in. $\times 20$ in.

PLAIN MILLING MACHINE.

 Others jemding.

The table has an automatic longitudinal feed of $42^{\prime \prime}$, an automatic transverse movement of $83-4^{\prime \prime}$ and can be lowered $20^{\prime \prime}$ from centre of spindle.

No. 442 in. $x 83$ in. $x 20$ in. PLAIN MILLING MACHINE.

The Spindle has a hole its entire length and runs in bronze boxes provided with means of compensation for wear. The front end is threaded, has a No. 11 taper hole, a recess across the end and a cap nut by which an arbor or collet provided with a clutch collar can be positively locked.

The Cone has 4 steps for $31-2^{\prime \prime}$. belt and is back geared, giving, with 2 speeds of counter, 12 changes of speed, from 10 to 487 revolutions per minute. Speeds in geometrical progression.
The Overhanging Arm is a solid steel bar. Distance from centre of spindle to arm, $\mathbf{7}^{14 \prime \text { "; greatest distance from end }}$ of spindle to centre in arbor support, 21 ". It is clamped at both bearings by one lever. An arm support is furnished that has a bearing for the arbor, thus allowing the usual arbor support to be used at any intermediate point near the cutter and with the support in position, milling can be done to 22 1-2" from face of column.

The Table, including oil pans and channels, is $60^{\prime \prime}$ long, $157-8^{\prime \prime}$ wide, has a working suiface $48^{\prime \prime} \times 14^{\prime \prime}, 3$ T slotes $3-4^{\prime \prime}$ wide, an automatic transverse feed of $83-4^{\prime \prime}$ and can be lowered $20^{\prime \prime}$ from centre of spindle.
The Elevating Screw is telescopic.
The Feed of table, of $42^{\prime \prime}$, is automatic in either direction and can be automatically released at any point. It is driven by a chain and sprocket wheels. There are ≥ 0 changes of feed, obtained by means of change gears, varying from .006 " to $.300^{\prime \prime}$ to one revolution of spindle. A fine hand feed is also provided. When the feed is automatically released the table remains locked in position.

Adjustable Dials, graduated to read to thousandths of an inch, indicate the longitudinal, transverse and vertical movements of table.

The Vise is flanged and has hardened jaws $71-8^{\prime \prime}$ wide, $2^{\prime \prime}$ deep and will open 4 1-2".
The Counter-shaft has 2 tight and 2 loose pulleys 14" and $18^{\prime \prime}$ in diameter for $4^{\prime \prime}$ belts and should run about 225 and 175 revolutions per minute.
Weight of machine ready for shipment: Hand Vertical Feed, without pump, alout 5350 lbs.; with pump, about 5415 lbs.; Power Vertical Feed, without pump, about 6100 lbs ; with pump, about 6165 liss. Tools, about 125 lhs.
Net Weight: Hand Vertical F'eed, without pump, about 4465 lbs .; with pump, about $4530 \mathrm{lhs}$. ; Power Vertical Feed, without pump, about 5200 lbs ; with pump, about 5265 j lbs. Tools, albout 1001 lbs .
Dimensions of boxes for shipment: Hand Vertical Feed, $72^{\prime \prime} \times 52^{\prime \prime} \times 75^{\prime \prime}$; Power Vertical Feed. $67^{\prime \prime} \times 51^{\prime \prime} \times 73^{\prime \prime}$.
Price includes No. 4 Flanged Vise, oil can, " G " collet, wrenches and everything else shown in cut, ogether with overhead works, boxed and delivered f. o. b. at Providence, R. I. Price, $\$$ Price, with Pump, $\$$

For Arbors, Collets, Tapers, Attachments and List of Tools, see pages 46 to 89.

No. 5

$48 \mathrm{in} \times$.93 -4 in. $\times 191-2 \mathrm{in}$. PLAIN MILLING MACHINE.

Patentell ()et. 18, 1892; Jan. 18, 1898; Fel). 6, 1900. Others pending.

The table has an automatic longitudinal feed of $48^{\prime \prime}$, an automatic transverse movement of $93-4^{\prime \prime}$ and the table can be lowered $191-2^{\prime \prime}$ from centre of spindle.

No. 5

48 in. $\times 9$ 3-4 in. $\times 19$ 1-2 in.

PLAIN MILLING MACHINE. With Hand or Power Vertical Feed.

The Spindle has a hole its entire length and runs in bronze boxes provided with means of compensation for wear. The front end is threaded, has a No. 12taper hole, a recess across the end and a cap nut by which an arbor or collet provided with a cluteh collar can be positively locked.
The Cone has 3 steps for $41: 2^{\prime \prime}$ belt and is double back geared, giving, with 2 speeds of counter, is changes of speed, rarying from 10 to 404 revolutions per minute. Speeds in geometrical progression.
The Overhanging Arm is a solid steel bar. Distance from centre of spindle to arm, $83-8^{\prime}$; greatest distance from end of spindle to centre in arbor support, $28^{\prime \prime}$. It is clamped at both bearings by one lever. An armsupport is furnished that has a bearing for the arbor, thus allowing the usual arbor support to be used at any intermediate point near the cutter, and, with the support in position, milling can be done to $2 \bar{z}^{\prime \prime}$ from face of column.

The Table, including oil pansand channels, is 66i-4" long, $18^{\prime \prime}$ wide, has a working surface $54^{\prime \prime} \mathrm{x} 166^{\prime \prime}, 3 \mathrm{~T}$ slot + $3.4^{\prime \prime}$ wide, an automatic transverse feed of 93^{-4} " and can be lowered $191-2^{\prime \prime}$ from centre of spindle.

The Elevating Screw is telescopic.
The Feed of table, of $48^{\prime \prime}$, is automatic in either direction and can be automatically released at any point. It is driven by a chain and sprocket wheels. There are 20 changes of feed, varying from $.007^{\prime \prime}$ to .350 "to one revolution of spindle. A fine hand foed is also provided. When the feed is automatically released, the table remains locked in position.

Adjustable Dials, graduated to read to thousandths of an inch, indicate the movements of table.
The Vise is flanged and has hardened jaws $71 . \mathbf{s}^{\prime \prime}$ wide, $2^{\prime \prime}$ deep and will open $41-2^{\prime \prime}$.
The Counter-shaft has 2 tight and loose pulleys, $166^{\prime \prime}$ and $20^{\prime \prime}$ In diameter for $5^{\prime \prime}$ belts and should run about 325 and 170 revolutions per minute.
Weight of machine ready for shipment: Hand Vertical Feed, without pump, about 81451 los ., with pump, about 8225 lbs.; Power Verticai Feed, without pump, about 8255 lbs ., with pump, about 8345 lls .; tools, about 250 llbs .

Net Weight: Hand Vertical Feed, without pump, about 6960 lbs ., with pump, about 7245 lhs .; Power Vertical Feed, without pump, about 7040 lbs ., with pump, about 7235 lbs ; tools, about 200 lbs. Floor Space, $115^{\prime \prime} \times 72^{\prime \prime}$.
Dimensions of box for shipment, $77^{\prime \prime} \times 58^{\prime \prime} \times 77^{\prime \prime}$.
Price includes No. 4 Flanged Vise, oil can, "T" collet, wrenches, and everything else shown in cut, together with overhead works, boxed and delivered f.o.b. at Providence, R. I. Price, $\$$

With Pump, \$
Price, with Power Vertical Feed, $\$$
For Arbors, Collets, Tapers, Attachments With Pump, $\$$ Tools, see pages 46 to 87 .

No. 12

$26 \mathrm{in} . \times 5-8 \mathrm{in} . \times 7$ 1-2 in.

PLAIN MILLING MACHINE.

The table has an automatic longitudinal feed of $26^{\prime \prime}$, the spindle has a transverse adjustment of $5-8^{\prime \prime}$ and the greatest distance from centre of spindle to top of table is $71-2^{\prime \prime}$.

No. 12

26 in. $\times 5-8$ in. $\times 7$ 1-2 in.

PLAIN MILLING MACHINE.

The Spindle runs in bronze boxes provided with means of compensation for wear. It is driven from cone by gear and pinion, has a vertical adjustment by means of nuts placed on a vertical screw and a transverse adjustment of 5-8'. The front end has a No. 10 taper hole.
The Cone has 3 steps for 2 1-2" belt.
The Overhanging Arm has an adjustable centre support and brace. Distance from centre of spindle to arm, 3 11-16"; greatest distance from end of spindle to centre in arm. "with arm brace in position, 8 1-4"; without arm brace, 10 1.4".

The Table, including oil pans and channela, is $33^{-\prime}$ long and $10^{\prime \prime}$ wide, has a working surface $29^{\prime \prime} \times 6^{\prime \prime}$ ", and a T slot 5-8" wide. Greatest distance from centre of "pindle to top of table, 7 1-2"; least, 2 1-2".
The Feed of table, of $26^{\prime \prime}$, is automatic in either direction and can be automatically released at any point. It is driven by a chain and sprocket wheels. There are 4 changes of feed, obtained by means of change gears, varying from $.012^{\prime \prime}$ to $.059^{\prime \prime}$ to one revolution of spindle.

An Oil Tank forms part of the base of the machine and provides for the use of a pump.

The Vise is flanged, has hardened jaws 6 1-8" wide, 1 1.16" deep and will open $35-8^{\prime \prime}$.

The Counter-shaft has tight and loose pulleys $10^{\prime \prime}$ in diam. eter for $3^{\prime \prime}$ belt and should run about 280 revolutions per minute.
Weight of machine ready for shipment, about 2210 libs.
Net Weight, about 1780 lbs .
Floor Space, $633^{\prime \prime} \times 46$ ".
Dimensions of box in which machine is shipped, 44 " $40^{\prime \prime}$ $\times 59^{\prime \prime}$.
Price includes No. 3 Flanged Vise, oil can, wrenches, and everything else shown in cut, together with overhead works boxed and delivered f. o. b. at Providence, R. I.
Price, $\$$
An Oil Pump, Pipes, etc., furnished when desired.

Price, $\$$

For Arbors, Collets and Tapers, see pages 46 to 53; Index Centres, pages 77 to 86 ; Vises, pages 87 to 89.

No. 13
$15 \mathrm{in} . \times 3 \mathrm{in} . x 93-8 \mathrm{in}$.
PLAIN MILLING MACHINES.

The table has an automatic longitudinal feed of $15^{\prime \prime}$, a transverse movement of $3^{\prime \prime}$, and the greatest distance from centre of spindle to top of table is $93-8^{\prime \prime}$. It is also made with Compound ${ }^{\top}$ "fears.

No. 13

15 in. x 3 in. x $93-8 \mathrm{in}$. PLAIN MILLING MACHINES.

The Spindle runs in bronze boxes provided with means of compensation for wear. It is driven from cone by gear and pinion and has a vertical adjustment by means of nuts placed on a vertical screw. The front end has a No. 10 taper hole.

The Cone has 3 steps for $3^{\prime \prime}$ belt.
The Overhanging Arm has an adjustable centre support and an arm brace. Distance from centre of spindle to arm, $27-8^{\prime \prime}$; greatest distance from end of spindle to centre in arm, $11^{\prime \prime}$.

The Table, including oil pans and channels, is $311-2^{\prime \prime}$ long and $101-2^{\prime \prime}$ wide, has a working surface $27^{\prime \prime} \times 8^{\prime \prime}, 3 \mathrm{~T}$ slots $5-8^{\prime \prime}$ wide and a transverse movement of $3^{\prime \prime}$. Greatest distance from centre of spindle to top of table. $93-8^{\prime \prime}$; least, 3 5-8".

The Feed of table, of $15{ }^{\prime \prime}$, is automatic and can be auto. matically released at any point. It is a screw feed and can bequickly returned by hand. There are 4 changes of feed, varying from . $015{ }^{\prime \prime}$ " to . $066^{\prime \prime}$ to one revolution of spindle.

In addition to the oil pans and channels surrounding the table, an oil tank is attached to each machine providing for the use of a pump.

The Vise is flanged, has hardened jaws $61-s^{\prime \prime}$ wide, $19-16^{\prime \prime}$ deep, and will open 3 is $8^{\prime \prime}$.

The Counter-shaft has tight and loose pulleys 10° in diam. eter for $31-4$ " belt and should run about 275 revolutions per minute.

Weight of machine ready for shipment, about 2960 lbs.
Net Weight, about 2450 libs. Floor Space, $49^{\prime \prime} \times 47^{\prime \prime}$.
Dimensions of box in which machine is shipped, $48^{\prime \prime} x$ 39"x 64 ".

Price includes No. 3 Flanged Vise, oil can, wrenches, and everything else shown in cut, together with overhead works, boxed and delivered f. o. b. at Providence, R. I.

Price, $\$$
An Oil Pump, Pipes, etc., furnished when desired.
Price, $\$$
This machine is also furnished with COMPOUND BACK GEARS; when so fitted:

The Spindle has a hole its entire length and a recess across the front end. The outer support has a bearing for arbor.

The Counter-shaft has tight and loose pulleys 15 " and $18^{\prime \prime}$ In diameter for 3 1-2" belts and should run about 275 and 333 revolutions per minute.

Weight of machine ready for shipment, about 3210 lbs.
Net Weight, about 2600 libs. Floor Space, $49^{\prime \prime} \times 47^{\prime \prime}$.
Dimensions of box in which machine is shipped, 48" $\times \mathbf{3 9}^{\prime \prime}$ $\times 64$ ".

Price, $\$ \quad$ Price, with pump, $\$$
For Arbors, Collets and Tapers, see pages 46 to 5
Centres, pages 77 to 86 ; Vises, pages 87 to 89 .

No. 13-B
30 in. x 2 in. $x 9$ in.

PLAIN MILLING MACHINE.

The table has an automatic longitudinal feed of $36^{\prime \prime}$; the spindle has a transverse adjustment of $2^{\prime \prime}$ and the greatest distance from centre of spindle to top of table is $9^{\prime \prime}$.

No. 13-B

30 in. $\times 2$ in. $\times 9$ in

PLAIN MILLING MACHINB.

The Spindle runs in bronze lnozes prorided witb meads of compensation for wear. It is drisen from rone livete: a:- ! pinion, has a vertical adjustment of σ and a irar-ie: adjustiment of $\mathbf{2}^{*}$. The front μ nd has a No. lutainer tan.

The Cone has 3 steps, the largeat $1=1-4^{\prime}:$ a diameter. for $23-4^{\prime \prime}$ belt.
The Overhanging Arm is a colid steel bar. Diatance fmon centre of spindle to arm, 3 11-1F': greate-t dizatice:r $:$ end of spindle to centre in arior support with a 7 it hrae in position, 10 1-2"; without arm brare. 12 1.2". T: . *-... support has a bronze bushing for learing of artior, ala, an adjustable centre.
The Table, including oil pans and channels. ia 42° lon $=$
 $5-8^{\prime \prime}$ wide. Greatest distance from centre of fininhee tu io. of table, 9^{7}, least, 3^{75}.

The Feed of table, of 30^{7}, is automatic in cither diremion. An automatic stol, is provided which releases the feed at any desired point. The feed is driven le a chain s 't sprocket wheels through a worm and worm wher 1 to a rach on under side of table, thus combining the alvantaz- of a rack and serew feed machine and securill a l"owrful. direct and steady feed. There are 4 (hathse of $f \cdot \cdots \cdot d$ oht. tained by means of change gears, varying from .ull to .twiz' to one revolution of the spindle.

The Bed of the machine is supported on a tand that is amply heary to insure rigidity. The top of tiu. stand is large and provided with an oil rim to catch all waste oil and protect the foor. A large tank forms part of the rating of the stand and provides for the use of : pump.

The Vise is fanged and has jaws $61-8^{\prime \prime}$ wite, $19-1 ;{ }^{\prime \prime}$ deep, and will open $35-s^{\prime \prime}$.

The Counter-shaft has tight and loose pullevs $10^{\prime \prime}$ in diameter for $31.2^{\prime \prime}$ belt and should run alout 330 revolutions per minute.
Weight of machine ready for shipment, about 2800 lls .
Net Weight, about 2300 lis.
Dimensions of box in which machine is shipped, $4 \mathrm{~s}^{\prime \prime} \times 3: 3{ }^{\prime \prime}$ x 64". Floor Space, $72^{\prime \prime} \times \mathrm{x}^{\prime \prime} 1^{\prime \prime}$.
Price includes No. 3 Flanged Vise, oil can, wrenches, Treatise on Milling Machines, and everything shown in cut, together with overhead works, boxed and delivered f. o.b, at Providence, R. I.

Price, $\$$
Pumps, pipes and fittings furnished when desired.
Price, $\$$
For Arbors, Collets and Tapers, see pages 46 to 5:3; Index Centres, pages 77 to 86 ; Vises, pages 87 to 89.

No. 24

$72 \mathrm{in}. \times 12 \mathrm{in} . \times 19 \mathrm{in}$.

PLAIN MILLING MACHINE.
Patented October 18, 1892; January 18, 1898; February 6, 1900.

The table has an automatic longitudinal feed of $72^{\prime \prime}$, and an automatic vertical feed of $19^{\prime \prime}$. The head has an automatic transverse movement of $12^{\prime \prime}$.

No. 24

$72 \mathrm{in} . \times 12 \mathrm{in} x 19 in.$. PLAIN MILLING MACHINE. Power Feeds in all Directions.

The Spindle is hollow, runs in bronze boxes provided with means of compensation for wear and is driven by worm and worm gear. The worm is of steel hardened and the worm gear of bronze. The worm wheel runs in oil. The front end of spindle is threaded, has a No. 11 taper hole, a recess across the end and a cap nut by which an arbor or collet provided with a clutch collarcan le positively locked.
The Cone has 2 steps for $31-2^{\prime \prime}$ belt and with two speeds of counter, gives 8 changes of speed, from 17 to 112 revolu. tions per minute. Speeds in geometrical progression.
The Head has an automatic transverse movement of $122^{\prime \prime}$ in either direction.
The Overhanging Arm is a solid steel bar. Distance from centre of spindle to arm, $71.4^{\prime \prime}$; greatest distance from end of spindle to centre in arbor support, $261-2 \prime$. It is clamped at both bearings by one lever. An arin support is furnished and with this in position milling can be done to 22 1-2" from face of column.

The Table, including oil pans and channels, is 81 " long and $171-4^{\prime \prime}$ wide, has a worktng surface "2"x 17 1-4", 3 T slots $3.4^{\prime \prime}$ wide and can be lowered $199^{\prime \prime}$ from centre of spindle.

The Elevating Screw is telescopic.
The Feed of table, of $\tau^{\prime \prime}$, is automatic in either direction and can be automatically released at any point. It is driven by a chain and sprocket wheels direct from the spindle. There are 20 changes of feed, varying from . $006^{\prime \prime}$ to $.3000^{\prime \prime}$ to one revolution of spindle. A fine hand feed is also provided. When the feed is automatically released, the table remains locked in position.
Adjustable Dials graduated to read to thousandths of an inch indicate the longitudinal, transverse and vertical move. ments. A dial, graduated to read to 64ths of an inch, indicates the transverse movement of the head.

The Vise is flanged and has hardened jaws ${ }^{\prime} 1-8^{\prime \prime}$ wide, $2^{\prime \prime}$ deep, and will open 4 1-2".

The Counter-shaft has 2 tight and loose.pulleys $14^{\prime \prime}$ and $18^{\prime \prime}$ in dianeter for 3 1-2" and $4^{\prime \prime}$ belts and should run about 350 and 267 revolutions per minute.

Weight of machine ready for shipment, about $\boldsymbol{7} 195 \mathrm{lbs}$; tools, about $12 \overline{5}$ Ibs.
Net Weight, about 5925 lbs ; tools about 100 lbs.
Floor Space, 59 "x $153^{\prime \prime}$.
Dimensions of boxes in which machine is shipped, $63^{\prime \prime} x$ $63^{\prime \prime} \times 71^{\prime \prime}$, and $88^{\prime \prime} \times 23^{\prime \prime} \times 10^{\prime \prime}$.
Price includes No. 4 Flanged Vise, oil can, " G " collet, wrenches ard everything else shown in cut, together with overhead works, boxed and delivered f. o.b. at Providence, R.I.

Price, \$ Price, with Pump, \$
For Arbors, Collets, Tapers, Attachments and Tools, sec pages 46 to 89.

No. 2

$26 \mathrm{in}. \times 12 \mathrm{in}. \times 20 \mathrm{in}$.
VERTICAL SPINDLE MILLING MACHINE.

This machine has an automatic longitudinal feed of $26^{\prime \prime}$, and an automatic transverse feed of $12^{\prime \prime}$. Greatest distance from end of spindle to top of table, $20^{\prime \prime}$.

No. 2

26 in. $\times 12$ in. $\times 20 \mathrm{in}$. VERTICAL SPINDLE MILLING MACHINE.

This machine, for many kinds of work, is preferable to a machine with a horizontal spindle. The operator can more easily see the work and more readily follow any irregu. larity in the outline of the surface to be milled.

The Spindle runs in bronze boxes provided with means of compensation for wear and, with two speeds of counter, has 18 changes of speed, as follows: using main cone $;$ direct, varying from 85 to $504 ; 3$ reverse, from 102 to 432, and, using high speed cone 6 direct, varying from 212 to 1260 resolutions per minute; 3 reverse, from 256 to 1080. The lower end of spindle has a No. 10 taper hole.

The Cone has 3 steps for $3^{\prime \prime}$ belt.
The Spindle Head has a vertical movement of $4^{\prime \prime}$. It is operated by a hand wheel that can be used for a fine hand feed or a quick movement of the hearl.

A Stop, with micrometer adjustment, is also provided for controlling the depth of cut.

Distance from centre of spindle to column, $16^{\prime \prime}$.
The Table, including oll pans and channels, is $45^{\prime \prime}$ long, $101.4^{\prime \prime}$ wide, has a working surface $371.2^{\prime \prime} \times 101.4^{\prime \prime}, 3$ T slots $5.8^{\prime \prime}$ wide, an automatic transverse movement of 12° and a vertical adjustment of $16^{\prime \prime}$. Greatest distance from end of spindle to top of table, $20^{\prime \prime}$.

The Feeds of table are automatic in either direction and can be reversed by the simple movement of a lever on the front of the machine. The longitudinal feed is $28^{\circ \prime}$, and the transverse feed is $12^{\prime \prime}$; both are automatic in either direc. tion, and can be autgmatically released at any point. There are 12 changes of feed for each direction, obtained by the movement of a lever controlling the feed gears, evenly graded from . $005^{\prime \prime}$ to $.125^{\prime \prime}$ to one revolution of spindle, with slow speed; and from $.002^{\prime \prime}$ to $.050^{\prime \prime}$, with fast speed. An index shows plainly the feed ohtained from main cone.

The Vise swivels, and has hardened jaws $51.8^{\prime \prime}$ wide, $11-4^{\prime \prime}$ deep, and will open $23-4^{\prime \prime}$.

The Counter-shaft lias 3 friction pulleys $14^{\prime \prime}$ in diameter. for $31.2^{\prime \prime}$ belt, and should run about 120 and 360 revolutions per minute direct and 240 reverse.

Weight of machine ready for shipment, about 4035 lbs.; Circular Milling Attachment, about 250 lles.
Net Weight, about 3050 lbs.; Circular Milling Attachment, about 200 llos. Floor Space, $88^{\prime \prime} \times 69^{\prime}$.
Dimensions of box in which machine is shipped, $71^{\prime \prime} \times 42^{\prime \prime}$ $x 81$.
Price includes No. 2 Swivel Vise, "BB" collet, oil can and stand, wrenches, table stops, and everything else shown in cus, together with overhead works, loxed and delivered f.o.l. at Providence, R. I. Price, \$

For Circular Milling Attachment for use with them. chine, see page 69.
For List of Tools for use with this machine, ser

COLLETS

For Use on Milling, Grinding mawn......

佂

COLLET BLANKS．

Price includes Turning Plug and Knockout Key．

SPRING CHUCK

For Nos．1，11－2， 2 and 2－A Universal，and Nos．1，1－B， 2 and 2－B Plain Milling Machines．
10 in ．and 12 in ．Index Centres． 10 in ．Universal Index Centres．

 $\because, . .$. －：＂．es，which is held in ． Cl ： a yainst the taper

心ばN:Nは, N: ! ! !
＊）W
\because sivit．
No．

MILLING MACHINE CUTTER ARBORS.

B

A

List continued on next page.

* In ordering, give construction number of machine.

milling machine cutter arbors.

(CONTINUED.)
Following Arbors have hardened sleeve, A, for outer bearing:

No. of Arbur.	Diam. Arbor.	Leugth from Shoulder to Nilt.	No. of Machine where used.	No. of таןег.	Price.
40	7.8	$12^{\prime \prime}$	Nob. 1, 1 1-2, 2 \& 2 A		$\$ 1100$
41	1	"	Universal;	10	1100
42	11.16	"	Nos. 1, $113,2,213,12,13$	10	1100
43	11.4	"	\& 13B Plaín.	(1100
44	7.8 '	177	Nos. 1, 1 1-2, 2 \& 2 A		1200
45	1		Universal;	10	1200
46	11.16	${ }^{\prime}$	Nos. 1, 113,2 \& 213	10	1200
47	11.4	${ }^{\prime}$	Plain.		1200
48A	7.8	16154		(1300
49 A	1.16	$17 \quad 3.4$			1300
50 A	111.16	011	No. 3 Universal;	11 \{	1300
51.	111.4	2018			1300
62.1	11.2				1300
*57	11.2	201.4	No. 23 Plain.	11	1400
60	$1^{7.8}$	17 21%		12	1500 1500
62	11.16		\dagger No. 24 Plain.	12 ?	1500
64	11.2	"		1	1500
*65	1	2.2			1500
*66	11.4	2634	No. 4 Universal	11	1500
*67	11.2		No. 4 Universal.	11	1500
*68	13.4	\cdots		,	1500
*65A	1	22			1700
* 66 A	11.4	263.4		11	1700
* 67 A	11.2	"	Nos. 4 a $\dagger 24$ Plain.	11	1700
*68A	13.4	"		(1700
*70	11.4			(2000
*71	11.2		No. 5 Plain.	12	2000
*2	2	'			2000

*These Arbors are provided with Clutch Collars, B. \dagger In ordering, give construction number of machine. For sizes of Tapers, see page 51.

MILLING MACHINE SCREW ARBORS.

No. of Arbor.	Diam. Arbor.	Thread	- Machine where used.	No. of Taper.	Price.
120	3-8'	$20, \mathrm{~L}$	$\left\{\begin{array}{l} \text { Nos. } 1,11-2,2 \& 2 A \text { Univ. } \\ \text { Nos. } 1,1 B, 2 \& 2 B \text { Plain. } \\ \text { No. } 2 \text { Vertical Spindle. } \end{array}\right\}$	7	S: 16
122	1-2	16, I.	$\left\{\begin{array}{l} \text { Nos. } 3 \& 4 \text { Uni versal. } \\ \text { Nos. } 00,0,3,4 \& 24 \text { Ilain. } \end{array}\right.$	9	3 m
125	3-8	20, I.	Nos. 1, 1 1-2, 2 \& $2 A$ Iniv. $1,113,2,2 B, 12,13 \& 1313$ PI.	111	350
130	1	10, L.	$\left\{\begin{array}{l} \text { Nos. } 3 \text { \& } 4 \text { Universal. } \\ \text { Nos. } 3,4 \& 24 \text { Plain. } \end{array}\right.$	11	600
*133	1	10, L .	$\left\{\begin{array}{l} \text { No. } 4 \text { Universal. } \\ \text { Nos. } 4 \& 24 \text { Plain. } \end{array}\right.$	11	700

*This Arbor is provided with a Clutch Collar.

STANDARD TAPERS.

For Spindles, Collets, Arbors, \&c., as Referred to in this Catalogue.
$\begin{array}{lllllllllll}\text { No. of Taper } & - & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \& & 9\end{array}$ Dia.at small end- . $20^{\prime \prime} .25^{\prime \prime} .312^{\prime \prime} .35^{\prime \prime} .45^{\prime \prime} .50^{\prime \prime}$. $\left.60^{\prime \prime \prime} .75\right)^{\prime \prime} .90^{\prime \prime}$
No. of Taper $\quad-10 \begin{array}{lllllllll}11 & 12 & 13 & 14 & 15 & 16 & 17 & 18\end{array}$ Dia.at small end-1.05" $1.25^{\prime \prime} 1.50^{\prime \prime} 1.75^{\prime \prime} 2^{\prime \prime} 2.25^{\prime \prime} 2.50^{\prime \prime} 2.75^{\prime \prime} 3^{\prime \prime}$
Tapers per foot and Corresponding Angles.

Taper PerFt.	Included Angle.	Angle with Centre Line	Taper PerFt.	Included Angle.	Angle with Centre Line.
$1.8{ }^{\prime \prime}$	$0^{\circ}-36^{\prime}$	$0^{0}-18^{\prime}$	$1 \prime$	$4^{\circ}-46^{\prime}$	20-23'
$1-4{ }^{\prime \prime}$	$1^{\circ}-12^{\prime}$	()0-36'	$11.2^{\prime \prime}$	$7{ }^{\circ}-09^{\prime}$	$3{ }^{\circ}-35^{\prime}$
5-16"	$1{ }^{\circ}-30^{\prime}$	$0^{\circ}-45^{\prime}$	$13 \cdot 4^{\prime \prime}$	$80-20^{\prime}$	$4^{\circ}-10^{\prime}$
3.8' ${ }^{\prime \prime}$	10-47'	$0^{\circ}-54^{\prime}$	$2{ }^{\prime \prime}$	$90-31{ }^{\prime}$	$4^{\circ}-46^{\prime}$
7.16"	$2^{\circ}-05^{\prime}$	10-02'	2 1-2'	$11^{\circ}-54^{\prime}$	$50-5{ }^{\circ}$
1.2"	$2^{\circ}-23^{\prime}$	10-12'		$14^{\circ}-15^{\prime}$	7° - ${ }^{(18}{ }^{\prime}$
3-4"	$3{ }^{\circ}-35^{\prime}$	$10-47^{\prime}$	3 1-2' ${ }^{\prime \prime}$	- $16^{\circ}-33^{\prime}$	$8^{\circ}-18^{\prime}$
15-16"	$4^{\circ}-28^{\prime}$	$2^{\circ}-14^{\prime}$	$4^{\prime \prime}$	180.-55'	$9^{\circ}-28^{\prime}$

ARBORS FOR FACE MILLING CUTTERS With Inserted Teeth.

Sir. of Aithor.	Machlne where used.	No. of Taper for Mill	No. or Taper Shank.	Price.
7!	$\left\{\begin{array}{l} \text { Nos. } 1,1 \text { 1.2, 2s2A Univ. s } \\ \text { Nos. } 1,1 \mathrm{~B}, 2 \mathrm{~s} 2 \mathrm{~B} \text { Plain. } \end{array}\right.$	10	10	\$800
* 210	No. ${ }^{\text {d V Vert. Spindle. }}$	10	11	800
$\cdots \times 1$	(Vir.spin. Mil.Attach. for) 1 No. J Ilain Mill. Mch.	13	11	1000
$N 2$	No. 3 Iniv. \& No. 3 Plahı.	12	11	1000
*3	No. ${ }^{\text {a }}$ Vert. Spindle.	12	11	1200
** 4	(No.4I'niv. \& Nos.4d+24, Plain.	12	11	1200
+5.is	Nos. 5 \& +2t Plain.	12	12	1200
+6\%	No. 24 Plain.	12	12	1200

Arbors marked * are povided with Clutch Collars; those marked ** provided with threaded hole for drawing in bolt; others have Tenons.

For sizes of Tapers, see page 51.
\dagger In ordering give construction number.

FLY CUTTER ARBORS

FOR MILLING MACHINES.

BROWN \& SHARPE MFG.CO.
PROVIDENCE.R.I. NA誠

The hole in the head is $3-4^{\prime \prime}$ square.

No. of Arbor.	No. of Machine where used.	No. of Taper.	Price.
	\{ Nos. 1, 1 1-2, 2 \& 2 AUniv; \}		
110	$\{$ Nos. $1,1 \mathrm{~B}, 2$ \& 2 Prain. $\}$	10	\$15 50
11:	1 Nus. 3 and 4 Universal; Nos. 3 and 4 Plain.	11	800

ARBORS FOR SHELL END MILLS.

These Arbors are carried in stock for either Right or Left Hand Mills.
In ordering, state whether Arhor is for Right ur Left Hand Mill.

Morse Taper furnished when desired.

* Denotes that Arbor is used in Collet.

For List of Mills used with above Arhors, see pages 238 and 238.

INDEX PLATES

For Use on Universal Milling Machines.

TAPER MANDRELS AND EXPANSION BUSHINGS.

$\begin{aligned} & \hline \text { fun } \\ & \text { drel } \\ & \text { No. } \\ & \hline \end{aligned}$	Whole Length.	ifiam. at Small End.	Price.	$\begin{aligned} & \text { Man- } \\ & \text { drel } \end{aligned}$ No.	Whole Length.	Diam. at Small End.	Price.
3	3 11-16"	. $3125^{\prime \prime}$	8140	9	$73 \cdot 16^{\prime \prime}$	$.90{ }^{\prime \prime}$	\$260
4	41.16	. 35	150	10	73.4	1.05	300
5	$41-2$. 45	165	11	83.8	1.25	350
6	51.8	. 50	180	12	9	1.50	400
7	5 15-16	. 60	200	13	95.8	1.75	475
8	6 9.16	. 75	225				

Mandrels take Bushings as follows: No. 3,2 sizes; Nos. 4 , $5,6,7$ and 8,3 sizes; Nos. $9,10,11,12$ and 13,6 sizes.

List of Bushings on following page.

EXPANSION BUSHINGS.

Octalde Dlameter of Bushing.	Length.	$\begin{aligned} & \text { For Mandrel } \\ & \text { No. } \end{aligned}$	Prioe.
1-2"	$11.2^{\prime \prime}$	3	- 55
$9-16$	15.8	8	55
5.8	13.4	4	65
11-16	17.8	4	, 65
8-4	2	4	65
13.16	21.8	5	80
7.8	$21-4$	5	80
15-16	23.8	5	80
1	$21-2$	6	95
$1 \begin{array}{ll}1 & 1.16\end{array}$	$25-8$	6	95
11.8	$23-4$	6	95
$1 \begin{array}{ll}1 & 3-16\end{array}$	2 7-8	7	115
1 1-4	3	7	115
1 5-16	31.8	7	115
13.8	31.4	8	140
17.16	33.8	8	140
11.2	31.2	8	140
$1 \mathrm{9}-16$	$35-8$	9	170
158	$35-8$	9	170
111.16	3 3-4	9	170
13.4	$33-4$	9	170
1 13-16	$37-8$	9	170
17.8	3 7-8	9	170
1 15-16	4	10	200
2	4	10	200
$\begin{array}{ll}2 & 1.16\end{array}$	41.8	10	200
$\begin{array}{ll}2 & 1.8\end{array}$	41.8	10	200
$\begin{array}{ll}2 & 3.16\end{array}$	41.4	10	200
$2{ }^{2}$	$41-4$	10	200
2 F	43.8	11	240
$2{ }^{2}$ 3-8	43.8	11	240
27.16	41.2	11	240
$\begin{array}{ll}2 & 1.2 \\ 8 & 1.2\end{array}$	41.2	11	240
$\begin{array}{ll}2 & 9.16\end{array}$	45.8	11	2.40
$\begin{array}{ll}2 & 8.8\end{array}$	45.8	11	240
8 11-16	43.4	12	280 280
2 3-4	43.4	12	280
$2113-16$	47.8	12	280
$\begin{array}{ll}2 & 7.8 \\ 2\end{array}$	47.8	12	280 280
$2{ }_{8} 15-16$	5	12	280 280
8	5	12	280 320
$\begin{array}{ll}3 & 1.16 \\ 3 & 1.8\end{array}$	$\begin{array}{ll}5 & 1.8 \\ 5 & 1.8\end{array}$	13	320 320
$\begin{array}{ll}3 & 1-8 . \\ 3 & 3-16\end{array}$	$\begin{array}{ll}5 & 1.8 \\ 5 & 1.8\end{array}$	13	320 320
$\begin{array}{ll}3 & 1.4\end{array}$	5 1-4	13	320
$\begin{array}{ll}8 & 5.16 \\ 8 & 8.8\end{array}$	$\begin{array}{ll}5 & 3-8 \\ 5 & 3-8\end{array}$	13 13	320 320
8 3-8	53.8	13	320

LATHE MANDRELS.

- These Mandrels are of tool steel, hardened and accurately ground. They are tapered $.0005^{\prime \prime}$ to one Inch. The Mandrels from $1.4^{\prime \prime}$ to $1^{\prime \prime}$ are $.0005^{\prime \prime}$ below size at the small end; and from $11.16^{\prime \prime}$ to $2^{\prime \prime} .001 "$ below size at the small end.

Niameter.	Total Length.	Price.
$1.4 \prime$	$31.2{ }^{\prime \prime}$	\$ 65
i. 16	$315 \cdot 16$	75
3.8	43.8	85
7-16	413.16	95
1.2	51.4	105
9.16	511.16	115
ise	6 1-8	125
11.16	69.16	135
3.4	7	145
13.16	$73-8$	155
7.8	73.4	170
15.16	$\times 1.8$	185
1	8 1-2	200
11.16	- 7.8	$\because 10$
11.8	91-4	220
13.14	9 5-8	230
11.4	10	245
15.16	103.8	260
13.8	103.4	275
17.15	111.8	290
11.2	111.2	310
19.16	12	330
15.8	12	350
111.16	12	370
13.4	12	390
113.16	12	410
17.8	12	435
115.16	12	460
2	12	480

TOOLS FOR USE ON MILLING MACHINES.

The tools in the following lists, we have found hy reperi ence to be among those first needed in using these minchines.

At the prices stated they cain levelid only in full nets. They are shipped with each machine, and, if not wanted, are to be carefully re-packed and returned liy express, at our expense.

TOOLS FOR USE ON No. 1 UNIVERSAL MILLING MACHINE.

Screw Arbor, 3-8", 20, I. H., No. 7 Taper, No 120. One Wrench for Arbor. Milling Arbor, $7-8^{\prime \prime}$, No. 44.
Fly Cutter Arbor with Tool, No. 11\%.
"A" Collet and Key.
End Mills, $\overline{5}-16^{\prime \prime}, 3-\mathbf{\delta}^{\prime \prime}$ diameter, No. 4 Taper, I. II. End Mills, $5-8^{\prime \prime}$, $11-8^{\prime \prime}$ diameter, No. 7 Taper, L. 11 . Milling Cutter, 1 1-4" diameter, 3-16" face, 3-א": ́․, I.. II. lule.

Milling Cutter, 2 1-4" diameter, 1 3-4" face, $7^{\prime \prime} \mathbf{N}^{\prime \prime}$ hole.
2 Side Milling Cutters, $4^{\prime \prime}$ diameter, 5-8"face, $7 \mathbf{- s}^{\prime \prime}$ hole.
Metal Slitting Saw, 2 1-2" diameter, $1-16^{\prime \prime}$ farce, $7 x^{\prime \prime}$ holr.
Angular Cutters, 60°, Right and Left Mand, $3 \cdot \mathrm{~s}^{\prime \prime}, \mathbf{2} \mathbf{0}$, I. II. hole.
 Cutter for Spiral Mills, 2 1-2" diameter, 7 :" hole. Weight, ready for shipment, about 2.51 lis. Price, \$34 0 .

TOOLS FOR USE ON Nos. 1 1-2, 2 \& 2-A UNIVERSAL MILLING MACHINES.

Screw Arbor, 3-8", 20, L. H., No. 7 Taper, No. 12).
Milling Arbor, $1^{\prime \prime}$, No. 45.
One Wrench for Arbor.
Fly Cutter Arbor and Tool, No. 110.
"A" Cellet and Key.
End Mill, $5-16^{\prime \prime}$ diam., No. 4 Taper, L. II.
End Mills, 1-2", 3-4", 1 1-4" diam., No. 7 T:iper, L. 11.
Milling Cutter, 2 1-2" diam., $2^{\prime \prime}$ face, $1^{\prime \prime}$ hole.
Two Side Milling Cutters, $4^{\prime \prime}$ diam., $5-8^{\prime \prime}$ face, $1^{\prime \prime}$ hole.
Metal Slitting Saw, $3^{\prime \prime}$ diam., $1-8^{\prime \prime}$ thick, $1^{\prime \prime}$ hole.
Angular Cutters, 60°, Right and Left Hand, $3-\aleph^{\prime \prime}, ~ \geq 0$, L. II. hole.

Angular Cutter, 60°, Right Hand, $23.4^{\prime \prime}$ diam., $1^{\prime \prime}$ hole.
Cutter for Spiral Mills, $23-4^{\prime \prime}$ diam., $1^{\prime \prime}$ hole.
Weight, ready for shipment, about 60 lbs .
Price, $\$ 340$.

TOOLS FOR USE ON No. 3

UNIVERSAL MILLING MACHINE.

8crew A rbor, 1.2", 16, L. H., No. 9 Taper, No. 122. Screw Arbor, $1^{\prime \prime}$ 10, L. H., No. 11 Taper, No. 130. Milling Arbor, $1^{\prime \prime}$, No. 49.
One Wrench for Arbor.
Fly Cutter Arbor with Tool, No. 112.
"C"' Collet and Key.
End Mills, $1-2^{\prime \prime}$ and $5-8^{\prime \prime}$ diam., No. 5 Taper, L. H.
End Mills, $7.8^{\prime \prime}$ and $11^{\prime \prime} 4^{\prime \prime}$ diam. No. 9 Traper, L. II.
Nilling Cutter, 2 1.2"' diam., $3^{\prime \prime}$ face, $1^{\prime \prime}$ hole.
Two Side Milling Cutters, $5^{\prime \prime}$ diam. $3-4^{\prime \prime}$ face, $1^{\prime \prime}$ hole.
Face Mill, $4^{\prime \prime}$ diam., $1^{\prime \prime}$ face, $1^{\prime \prime}, 10$, L. H. hole.
Metal Slitting Saw, $4^{\prime \prime}$ diam., $1-8^{\prime \prime}$ thick, $1^{\prime \prime}$ hole.
Angular Cutters 60°, Right and Left Hand, $1.2^{\prime \prime}, 16$, L. H. bole.

Angular Cutter, 60°, Right Hand, 2 3-4" diam., $1^{\prime \prime}$ hole. Cutter for Spiral Mills, 2 3-4" diam., $\mathbf{1}^{\prime \prime}$ bole.
Weight, ready for shipment, about 60 lbs.
Price, $\$ 4800$.

TOOLS FOR USE ON No. 4

UNIVERSAL MILLING MACHINE.

Screw Arbor, 1-2", 16, L. H., No. 9 Taper, No. 122.
Bcre:v Arbor, $1^{\prime \prime}, 10$, L. H., No. 11 Taper, No. 133.
Milling Arbor, 1 14", $^{\prime \prime}$ No. 66.
One Wrench for Arbor.
One Fly Cutter Arbor, No. 112, with Tool.
One "C" Collet and Key.
End Mills, $1-2^{\prime \prime}$ and $5-8^{\prime \prime}$ diam., No. 5 Taper. L. H.
End Mills, $3-4^{\prime \prime}, 1^{\prime \prime}$ and $114^{\prime \prime}$ diam., No y Taper. L. H.
End Mill, Centre Cut, $11-2^{\prime \prime}$ diam., No. 9 Taper.
Milling Cutters, 1 each- $3^{\prime \prime}$ diam., 3-8" face, $11-4^{\prime \prime}$ hole;
$8^{\prime \prime}$ diam., $5-8^{\prime \prime}$ face, 1 1-4" hole; $3^{\prime \prime}$ diam., $11-4^{\prime \prime}$ face, 1 14" hole; $3^{\prime \prime}$ diam., $2^{\prime \prime}$ face, 11 - $4^{\prime \prime}$ hole; $3^{\prime \prime}$ diam., $3^{\prime \prime}$ face, $114^{\prime \prime}$ hole.

Milling Cutter with Nicked Teeth, $3^{\prime \prime}$ diam., $4^{\prime \prime}$ face, $114^{\prime \prime}$ hole.

Two Side Milling Cutters, $6^{\prime \prime}$ diam., 15-16" face, $114^{\prime \prime}$ hole. Face Mill, $4^{\prime \prime}$ diam., $1^{\prime \prime}$ face, $1^{\prime \prime}, 10$, L. H. hole.
Metal Slitting Saw, $5^{\prime \prime}$ diam, $1-8^{\prime \prime}$ thick, 1 1-4" hole.
Angular Cutters, 1 each- 60°, Right and Left Hand, $15-8^{\prime \prime}$ diam., 9-16" thick, $1-2^{\prime \prime}, 16$, L. H.
Angular Cutters, $1^{\prime \prime}$ each- 60°, Right and Left Hand, $\mathbf{g}^{\prime \prime}$ siam., 1-2" thick, $114^{\prime \prime}$ hole.

Cutter for Spiral Mills, $3^{\prime \prime}$ diam., 1 1-4" hole.
Weight, ready for shipment, about 75 lbs.
Price, $\$ 7300$.

TOOLS FOR USE ON

No. 00 HAND MILLING MACHINE.

End Mills, 1-4", 3-8", 1-2" diameter, No. 5 Taper, L. H. Spiral End Mills, 11-16", $7-8^{\prime \prime}$ diameter, No. 9 Taper, L. II. Milling A rbor, $7-8^{\prime \prime}$ diameter, No. 08 (without Wrench). Milling Cutter, 2 1-4", diameter, $1-2^{\prime \prime}$ face, $7-8^{\prime \prime \prime}$ bole. Milling Cutter, 2 1-4' diameter, $1^{\prime \prime}$ face, $7^{\prime \prime}-8^{\prime \prime}$ hole.
Two Side Milling Cutters, 2 1-2" diameter, $1.2^{\prime \prime}$ face, $\overline{\text { I-s" }}$ hole.
Metal Slitting Saw, 2 1-2" diameter, $1-8^{\prime \prime}$ thick, $7-8^{\prime \prime}$ hole. Weight, ready for shipment, about 15 lbs .

Price, $\$ 1400$.

TOOLS FOR USE ON No. 0 PLAIN MILLING MACHINE. Screw Feed.

End Mills, 5-16" and 3-8" diam., No. 5 Taper, I. II.
End Mills, 11-16"' and 1 1-8" diam., No. 9 Taper, L. II.
Milling Arbor, 7-8", No. 08.
One Wrench for Arbor.
Milling Cutter, 2 1.4" diam., 1.2" face, 7 - $^{\prime \prime}$ bole.
Milling Cutter, 2 1-4" diam., $1^{\prime \prime}$ face, $7^{\prime \prime} 8^{\prime \prime}$ hole.
Milling Cutter, 2 1.4" diam., $13.4^{\prime \prime}$ face, $7-8^{\prime \prime}$ hole.
Two Side Milling Cutters, 2 3-4" diam., 1-2" face, $7-8^{\prime \prime}$ hole.
Metal Slitting Saw, 2 1-2"' diam., 3-32" thick, $7.8^{\prime \prime}$ hole.
T Slot Cutter, 11-16" diam., 7-32"' thick, No. 5 Taper, No. 16. Weight, ready for shipment, about 15 lbs.

Price, $\$ 1700$.

TOOLS FOR USE ON Nos. 1 and 2 PLAIN MILLING MACHINES.

Milling Arbor, $1^{\prime \prime}$, No. 45.
One Wrench for Arbor.
"A" Collet and Key.
End Mill, 5-16" dian., No. 4 Taper, L. H.
End Mills, $1-2^{\prime \prime}, 5-8^{\prime \prime}$ and $11-8^{\prime \prime}$ diam., No. 7 Taper, L. II.
Milling Cutter, 2 1-2"' diam., $1.2^{\prime \prime}$ face, $1^{\prime \prime}$ hole.
Milling Cutter, 2 1-2"' diam., $1^{\prime \prime}$ face, $1^{\prime \prime}$ hole.
Milling Cutter, 2 1-2", diam., 1 1-2"' face, $1^{\prime \prime}$ bole.
Milling Cutter, 2 1-2" diam., $3^{\prime \prime}$ face, $1^{\prime \prime}$ hole.
Two Side Milling Cutters, $4^{\prime \prime}$ diam., $5-8^{\prime \prime}$ face, $1^{\prime \prime}$ hole.
Metal Slitting saw, $3^{\prime \prime}$ diam., $1-8^{\prime \prime}$ thick, $1^{\prime \prime}$ hole.
T slot Cutter, $15-16^{\prime \prime} \times$ 9-32', No. 7 Taper, No. 28.
Weight, ready for shipment, about 25 lbs.
Price, $\$ 2800$.

TOOLS FOR USE ON Nos. 1-B and 2-B

PLAIN MILLING MACHINES.

Screw Arbor, 3-8", 20, L. H., No. 7 Taper, No. 120.
Milling Arbor, $\mathbf{1}^{\prime \prime}$, No. 45.
One Wrench for Artor.
Fly Cutter Arbor and Tool, No. 110.
" A " Collet and Key.
End Mill, $3.16^{\prime \prime}$ diam., No. 4 Taper, L. H.
End Mills, 1-2", 3.4", 1 1-4" diam., No. 7 Taper, L. H.
Milling Cutter, 2 1.2" diam., $\mathbf{2}^{\prime \prime}$ face, 1^{\prime} hole.
Two Side Milling Cutters, $4^{\prime \prime}$ diam., $5-3^{\prime \prime}$ face, $1^{\prime \prime}$ hole.
Metal Slitting Saw, $3^{\prime \prime}$ diam., $1-8^{\prime \prime}$ thick, $1^{\prime \prime}$ hole.
Angular Cutters, $\mathbf{6 0}$, Right and Left Hand, 3-8", 20, I. H. hole.

Angular Cutters, Right Hand, 60, 2 34" diam., 1" hole.
Weight, ready for shipment, about 60 lbs.
Price, $\$ 3_{2} 0^{\circ}$.

TOOLS FOR USE ON

No. 3 PLAIN MILLING MACHINE.

Milling Arbor, 1 1-4", No. 51 A.
One Wrench for Arior.
"C" Collet and Key.
End Mills, 1-2" and 5-8" diam., No. 5 Taper, L. H.
End Mills, $7-8^{\prime \prime}$ and 1 1-4" diam., No. 9 Taper, L. H.
Milling Cutter, $3^{\prime \prime}$ dinm.s $2^{\prime \prime}$ face, $11.4^{\prime \prime}$ hole.
Milling Cutter, 3 1-2' diam., 3 1-2" face, 1 1-4" hole.
Two Side Milling Cutters, $6^{\prime \prime}$ diam., 15-16' face, 1 1-4" hole.
Metal Slitting Saw, $5^{\prime \prime}$ diam., $1-8^{\prime \prime}$ thick, 1 1.4" hole.
T Slot Cutter, 1 3-16'x 13-32", No. 9 Taper, No. 34.
Weight, ready for shipment, about 60 lbs .
Price, $\$ 36$ o

TOOLS FOR USE ON

Nos. 4 and 24 PLAIN MILLING MACHINES.

Milling Arbor, $11.2^{n \prime}$ diameter, No. 67 A.
One Wrench for Arbor. .
"C" Collet and Key.
Find Mills, $1-2^{\prime \prime}$ and $5-8^{\prime \prime}$ diam., No. 5 Taper, L. H.
End Mill, $1^{\prime \prime}$ diam., No. 9 Taper, L. H.
End Mill with Centre Cut, 1 1-4" diam., No. 9 Taper, L. H .
Milling Cutter, $4^{\prime \prime}$ diam., 1-2" face, 11-2" hole.
Milling Cutter, $4^{\prime \prime}$ diam., $1^{\prime \prime}$ face, $11-2^{\prime \prime}$ hole.
Milling Cutter, 4^{n} diam., 2^{n} face, $11-2^{n}$ hole.
Milling Cutter with Nicked Teeth, $4^{\prime \prime}$ diam., $3^{\prime \prime}$ face, $11-2^{\circ}$ hole.

Milling Cutter with Nicked Teeth, $4^{\prime \prime}$ diam., $6^{\prime \prime}$ face, 1 1.90 hole.
Metal Slitting Saw, $6^{\prime \prime}$ diam., 3-16" face, 1,1-2" hole.
Two Side Milling Cutters, $6^{\prime \prime}$ diam., $15.16^{\prime \prime}$ face, $11.2^{\prime \prime}$ hole.
Face Milling Cutter with Inserted Teeth, 8 1-2" diam., 8 1-4", $81-2^{\prime \prime}$, L. H. hole.

T Slot Cutter, 1 5-16"diam., 17-32" thick, No. 9 Taper, No. 37. Weight, ready for shipment, about 125 lbs.

Price, $\$ 7200$.

TOOLS FOR USE ON

No. 5 PLAIN MILLING MACHINE.

Milling Arbor, 11-2", No. 71.
Milling Arbor, $2^{\text {¹, }}$ No. 72.
Two W renches for Arbors.
"C" Collet and Key.
End Mills, 1-2" and $5-8^{\prime \prime}$ diam., No. 5 Taper, L. H.
End Mill, $1^{\prime \prime}$ diam., No. 9 Taper, L. H.
End Mill with Centre Cut, 11-2" diam., No. 9 Taper, L. H.
Milling Cutter, $4^{\prime \prime}$ diam., 1-2" face, 11-2" hole.
Milling Cutter, $4^{\prime \prime}$ diam., $1^{\prime \prime}$ face, $11-2^{\prime \prime}$ hole.
Milling Cutter, $4^{\prime \prime}$ diam., $2^{\prime \prime}$ face, $11-2^{\prime \prime}$ hole.
Milling Cutter with Nicked Teeth, 4 1-2" diam., 2 1-2" face, 2^{n} hole.
Milling Cutter with Nicked Teeth, $41-2^{\prime \prime}$ diam., 4^{n} face, 9^{0} hole.
Miling Cutter with Nic̄ked Teeth, $41.2^{\prime \prime}$ diam., $6^{\prime \prime}$ face, $2^{\prime \prime}$ hole.

Metal slitting Saw, $6^{\prime \prime}$ diam., 3.16" face, $11-2^{\prime \prime}$ hole.
Two Side Milling Cutters, $8^{\prime \prime}$ diam., $13-8^{\prime \prime}$ face, $2^{\prime \prime}$ hole.
Face Milling Cutter with Inserted Teeth, $91-2^{\prime \prime}$ diam., $4^{\prime \prime}$, 8, L. H. hole.
T Slot Cutter, 1 5-8" diam., 11-16" thick, No. 9 Taper, No. 40 Weight, ready for shipment, about 225 lbs .

TOOLS FOR USE ON

No. 2 VERTICAL SPINDLE MILLING MACHINE.

Arbor for Shell End Mills, No. 10 Taper, No. 98.
"A" Collet and Key.
Bcrew Arbor, 3-8", 20, L. H., No. 7 Taper, No. 120.
End Mills, $14^{\prime \prime}$ and $3-8^{\prime \prime}$ diam., No. 4 Taper, L. H.
End Mills, $1.2^{\prime \prime}$ and $5-8^{\prime \prime}$ diam., No. 7 Taper, L. H.
Spiral End Mills, 7-8" and 11-4" diam., No. 7 Taper, E. H.
End Mills with Centre Cut, $1^{\prime \prime}$ and $11-4^{\prime \prime}$ diam., No. 7 Taper, L. H.

Shell End Mills, $3^{\prime \prime}$ diam., L. H.
Spiral Shell End Mills, 2 1-4" diam., L. H.
T Slotting Cutters, 15-16" diam., 9-32" thick, No. 7 Taper, No. 28.

Angular Cutters, 60°, R. and L. H., 3-8 $\mathbf{8}^{\boldsymbol{\prime}} \mathbf{2 0}$, L. H. hole.
Weight, ready for shipment, about 40 lbs.
Price, $\$ 8 \mathbf{0} \mathbf{0}$.

TOOLS FOR USE ON

No. 5 VERTICAL SPINDLE MILLING
 MACHINE.

Arbor for Face Mill, No. 11 Taper, No. 80.
"D" Collet and Key.
End Mills, $3-8^{\prime \prime}$ and 9-16" diam., No. 5 Taper, L. H.
End Mills, $7-8^{\prime \prime}$ and 1 1-4" diam., No. 9 Taper, L. H.
Profling Cutter, 2 1.2" diam.
Face Mill, $4^{\prime \prime}$ diam.
T Slot Cutter, 1 3-16"x 13-32", No. 9 Taper, No. 34.
60° Angular Cutter, 3 3-4" diam.
Inserted Tooth Face Mill, 7 1-2" diam., hole, 3 1-4" $\times 3$ 1-2 L. Weight, ready for shipment, about $8 \overline{\mathrm{~L}} \mathrm{ll} \mathrm{s}$.

Price, $\$ 4000$.

HIGH SPEED MILLING ATTACHMENTS. For Nos. 1, 11-2, 2, 2A, 3 \& 4 Universal and Nos. 1, 1B, 2, 2B, 3, 4. \& 24 Plain Milling Machines.

This Attachment consists of a bracket that is clamped to the face of the column and an internal pear that is screwed on to the cone spindle that meshes with a pinion upon the spindle of the Attachment.
The Spindle is hardened and ground and runs in a phosphor bronze bearing. The front end has a taper hole.
Weights for Shipment: Attachment No. 10, about 40 lbs.; Nos. 11 and 12, about 70 llbs.

Dimensions of Boxes for Shipment: No. $10,17^{\prime \prime} \times 13^{\prime \prime} \times 8^{\prime \prime}$; Nos. 11 and $12,19^{\prime \prime} \times 16^{\prime \prime} \times 8^{\prime \prime}$.

No.	Machineswhere used.	$\left\lvert\, \begin{gathered} \text { No. } \\ \text { Taper Hole } \\ \text { in Spindle. } \end{gathered}\right.$	Ratio of Gears.	Speeds.		Price.
				Changes.	Range.	
10	1 Universal;	4	51.4 to 1	8	292 to 1737	\$
10	1 \& 1B Plain	4	51.4 to 1	8	292 to 1737	\$
	11-2\&2 Univ;	4	-5 1-4 to 1	8	$\left\lvert\, \begin{aligned} & 412 \text { to } 1659 \\ & 412 \text { to } 1659 \end{aligned}\right.$	
10	2 \& 2B Plain;	4		8	$\left\lvert\, \begin{aligned} & 412 \text { to } 1659 \\ & 443 \text { to } 1961 \end{aligned}\right.$	\$
	3 Universal;	5	$41-2$ to 1	8	360 to 1764	
11	3 Plain	5	$41-2$ to 1	8	360 to 1764	
	4 Universal;	${ }_{5}^{5}$	41.2 to 1	${ }_{8}^{8}$	365 365 to 2191 3191	
12	4 Plain ${ }^{24}$ Plain	${ }_{5}^{5}$	$\left.\begin{array}{ll} 4 & 1.2 \\ 4 & \text { to } \\ 4 & 2 \end{array}\right\}$	$1 \text { 100 }$	$\left\|\begin{array}{l} 365 \text { to } 2191 \\ 877 \text { to } 504 \end{array}\right\|$	

VERTICAL SPINDLE MILLING

 ATTACHMENTS

VERTICAL SPINDLE MILLING ATTACHMENTS

For Nos. 4, 5 and 24 Plain and No. 4 Universal Milling Machines.

The Holder or frame is secured to the frame of the machine and the horizontal shaft is inserted in the cone spindle.

The Vertical Spindle is driven by the horizontal shaft through bevel gears.

The Spindle can be set at any angle from a vertical to a horizontal position. The position is indicated on the base of spindle head, which is graduated.

No.	Machine where used.	N, Taper Hole in Spindle.	$\begin{gathered} \text { Collet } \\ \text { Fur- } \\ \text { nished. } \end{gathered}$	$\begin{aligned} & \text { Sued per } \\ & \text { Miu. } \end{aligned}$	Distance from Ceutre of Spin. to Face of Column or Head
12	No. 4 Univ. and No. 4 Plain) 9	K	9 to 426	$91 \cdot 2^{\prime \prime}$
12.	No. 24 Plain	9	K	24 to 157	$91 \because$
13	No. 5 Plain	11	\bigcirc	9 to 345	11

No. 12, Net Weight, about 115 llos. Weight for shipment, about 140 lbs. Price, $\$$
No. 12 A , Fet Weight, about 115 lbs. Weight for shipment, about 140 lbs. Price, $\$$
No. 13, Net Weight, about 175 lbs . Weight for shipment, about 190 lbs. Price, \$
Dimensions of boxes for shipment: No. 12, 18" $\times 14^{\prime \prime} \times 11^{\prime \prime}$; No. $12 \mathrm{~A}, 17^{\prime \prime} \times 15^{\prime \prime} \mathrm{x} 11^{\prime \prime}$; No. $13,21^{\prime \prime} \times 16^{\prime \prime} \times 13^{\prime \prime}$.
Collets, pages 46 and 47. Table of Tapers, page 51.

This Altschment is secured to the frame of the machine and the horicuntal shatt is inserted in the cone spindle of the mas-hille.
The Spindle of the sttichment is driven through bevel geare and can la set at any ansle in a vertical or horizontal phathe. The position is indhatcyi by gratuations reading to degivery It hasa No. 3 Tiaper Hole.
Speed per mituute: No. t C'ulversal and No. 4 Plain Milling
下evolutions 以ल minute.

Distance fom centre of spindle to column, 9 1.2".
Collet furnished, k.
Net Woight, lisilh. Wa "mpanent, about 190 Ibs
Dimenaiana of las io. Pries, 10"x \mathbf{x} la".

SLOTTING ATTACHMENTS.

These Attachments are well adapted for tool making of all kinds, as in forming box tools, making templates, spliting keyway, etc.

The Tool slide is driven from the main spindle of the machine by an adjustable crank that allows the stroke to be adjusted as follows: Attachment No. 9, 0 to $13-4^{\prime \prime}$; No. 10,0 to $2^{\prime \prime}$; Nos. 11, 12 and 12A, 0 to $3^{\prime \prime}$. The slide can be set at any angle, between 0 and 10°, either side of the centre line the position being indicated by a scale on the lower part of the frame.

Dimensions of Boxes in which Attachments are shipped: No. $9,20^{\prime \prime} \times 13^{\prime \prime} \times 9^{\prime \prime} ;$ No. $10,24^{\prime \prime} \times 13^{\prime \prime} \times 11^{\prime \prime} ;$ No. $11,25^{\prime \prime} \times 16^{\prime \prime} \mathrm{x}$ $11^{\prime \prime}$; No. $12,27^{\prime \prime} \times 181-2^{\prime \prime} \times 11^{\prime \prime}$; No. $12 \mathrm{~A}, 27^{\prime \prime} \times 181 \cdot 2^{\prime \prime} \times 11^{\prime \prime}$.

10 Inch CIRCULAR MILLING AND DIVIDING ATTACHMENT.

This attachment is found well adapted for use upon Milling Machines, in connection with the Vertical Spindle Milling Attachment and the Slotting Attachment.

The Table is $10^{\prime \prime}$ in diameter, and has 2 T slots, $5-8^{\prime \prime}$ wide. It can be rigidly clamped in position. The entire circumference is graduated to degrees.

The Dial on the worm shaft is graduated to read to 5 minutes. The index finger is adjustable.

The Feed of table is operated by a hand wheel.

The Worm can be thrown out of mesh and the table easily turned by hand.

The attachment is $41-2^{\prime \prime}$ high.
Weight, ready for shipment, about 70 lbs.
Net Weight, about 56 lbs .
Dimensions of box in which attachment is shipped, $19^{\prime \prime} \times 16^{\prime \prime} \times 8^{\prime \prime}$.

Price, $\boldsymbol{\$}$

18 Inch CIRCULAR

MILLING ATTACHMENT.

This Attachment is found well adapted for use upon Mill. ing Machines in connection with the Vertical Spindle Milling Attachment.

The Table is $18^{\prime \prime}$ in diameter and has $4 \mathbf{T}$ slots $5-8^{\prime \prime}$ wide. The circumference of the entire circle is graduated to degrees.

The Feed of table is operated by a hand wheel. The worm can be thrown out of mesh and the table easily turned by hand. A clamp screw is provided for clamping the table in position.

The Attachment is $45-8^{\prime \prime}$ high.
Weight, ready for shipment, about 25.5 lis.
Net Weight, about 2.25 lhs .
Dimensions of box in which Attachment is shipped, $26^{\prime \prime} \mathrm{x}$ $24^{\prime \prime} \times 8^{\prime \prime}$.

Power Feed. This Attachment is also furnished fitted wlth Power Keed for use on the No. 2 Vertical Spindle Mill. ing Machine.
Weight, with Power Feed, ready for shipment, about 345 lis.

Net Weight, with Power Feed, about 275 Ihs.
Dimensions of box in which Attachment is shipped, $30^{\prime \prime} \mathbf{x}$ $26^{\prime \prime} \times 8^{\prime \prime}$.

Price, Attachment with Hand Feed, \$
Price, Attachment with Power Feed, \$

20 Inch CIRCULAR MILLING ATTACHMENT.

This Attachment for the No. 5 Vertical Spindle Milling Machine is of service in milling circles, segments of circles, circular slots, etc., on plain and irregularly shaped pieces. It is bolted to the table of the machine, and when so placed can be adjusted to any desired position.
The Table is $20^{\prime \prime}$ in diameter and has 6 T slots 8-4" wide, and is graduated to read to degrees. It remains locked in position when the feed is automatically released.
The Feed of table is positive and automatic and can be automatically released at any point. There are 16 changes of feed.
The Attachment is $51-8^{\prime \prime}$ high.
Weight, ready for shipment, about 525 lbs.
Net Weight, about 420 lbs.
Dimensions of box in which attachment is ahipped, $49^{\prime \prime} \times 26^{\prime \prime} \times 11^{\prime \prime}$.

Price, 8
In ordering this attachment, give construction number of machine, which is stamped on both the top front of table and top front of ways.

RACK CUTTING ATTACHMENTS.

The cutter spindle is hardened and ground. It is smoothly driven from the main spindle of the mathine through spiral and herring-bone gears and runs in phosphor bronze boxes provided with means of compensation for wear.

Cutters for use on the No. 10 Attachment, pages 265 and 273, same as used on No. 3 A utomatic Gear Cuttine Marhines. Cutters for Nos. 11 and 12 Attachments, pages 266 and 273, same as used on No. 4 Automatic Gear Cutting Machines.

The Vise furnished with the No. 10 Attachment has jatws $26^{\prime \prime}$ long and will open $3^{\prime \prime}$; with the Nos. 11 and 12 Attachments the vise has jaws $36^{\prime \prime}$ long and will open $4^{\prime \prime}$.

Weights for Shipment: Attachment No. 10, about 185 lhs.; Nos. 11 and 12, about 400 lbs.

Net T"eights: Attachment No. 10, ahout 135 1hs.: Nos. 11 and 12 , about 315 lbs.

Dimensions of hoxes for shipment: No. $10,30^{\prime \prime} \times 1 t^{\prime \prime} \times 10^{\prime \prime} ;$ Nos. 11 and $12,41^{\prime \prime} \times 17^{\prime \prime} \times 15^{\prime \prime}$.

No.	Machine where used.	Diam. of Cutter Spindle.	Distance Centre of Spinto Bottom of Spin. Head.	Capacity Dlametral Pitch.	Price.
$10\{$	$\begin{aligned} & 1,11-2,2 \& 2 A \\ & \text { Universal; } \\ & 113 \& 2 B \text { Plain } \end{aligned}$	$\} 1^{\prime \prime}$	$1^{\prime \prime} \quad\{$	Cast Iron, 6 Steel, 8	\}
11	3 Universal	11.4	13.16	Cast Iron, 4 Steel, 6	\{ $\$$
12	4 Universal	11.4	13.16	Cast Iron, 4 Steel, 6	\} 8
12A	24 Plain	11.4	13.16	$\begin{gathered} \text { Cast Iron, } 4 \\ \text { Steel, } 6 \\ \hline \end{gathered}$	\}

Scale and Vernier and Indexing Attachment for use on Universal Milling Machines are provided for longitudins

INDEXING ATTACHMENTS.

For Use with Rack Cutting Attachments on Universal Milling Machines.

This Attachment consists of a bracket that can be fastened to the left hand end of the table, for carrying the index plate or locking disk, together with the change gears for gearing to the feed screw. Its use enables racks to be cut and longitudinal settings made without the necessity of relying upon the dial ordinarily used for this purpose.

The Locking Disk, provided with two slots to receive the locking pin, is attached to the adjustable stud on the bracket. A shoe is furnished, that fits either of these slots when a complete revolution is required, thus preventing error.

There are 13 change gears furnished for cutting teeth as follows: diametral pitch, all pitches from 4 to 16 inclusive, all even pitches from 18 to 32 inclusive; ircular pitch, $2^{\text {n }}$ to 8^{n} inclustive. These gears also provide for divisions from $1-8^{\prime \prime}$ to $3.4^{\prime \prime}$ varying by 16ths.

An Index Table is furnished for use in connection with each one of these attachments.
Machines where used: Attachment No. 10, Nos. 1, 1 1-2 and 2 Universal Milling Machines; No. 11, No. 3 Universal; No. 12, No. 4 Universal.

Price includes change gears, wrenches, etc.
Price, Attachment, No. 10, \$ No. 15, 8 No. 12, $\$$

SCALE AND VERNIER.

For Longitudinal Adjustment of Table.

The Scale and Vernier are for use in connection with Universal Milling Machines, when it is desired to make exceptionally fine longitudinal adjustments of the table; as, for example, in loring Jigs and work of a similar character.
The Scale is $24^{\prime \prime}$ long, graduated to 50 ths of an inch, and, by means of the Vernier, readings can be made to thousandths of an inch. When in use the Scale is fastened into the trip dog T slot on the front of the table by means of screws that are furnished. The Vernier is held by a single screw attached to the front of the saddle of the machine. It can be used on all of the Universal Milling Machines shown in this catalogue.

Price, \$
When ordering, specify the machine on which the Scale and Vernier are to be used.

No. 10

CAM CUTTING ATTACHMENT.

For Use on Nos. 1, 1 1-2, 2, 2A \& 3 Universal, and Nos. 1,1B, 2,2B \& 3 Plain Milling Machines.

This attachment is used for cutting either Face or Cylindrical Cams from a flat former cut from a disk.

All necessary movements are contained in the attachment itself, allowing the table of the machine to remain clamped in one position during the cutting of the cam.

Cams $12^{\prime \prime}$ in diameter can be cut with any throw to $5^{\prime \prime}$.

Net Weight, about 570 lbs.
Weight for shipment, about 750 lbs .
Dimensions of box for shipment, approximate, $40^{\prime \prime} \times 28^{\prime \prime} \times 22^{\prime \prime}$.

Price, 8

TAPER MILLING ATTACHMENT

FOR
Nos. 1, 1 1-2 and 2 Universal Milling Machines.

This attachment is designed to facilitate the milling of taper work. By reason of its easy and quick adjustment to the desired taper it is especially desirable when a large variety of such work is to be done.

It consists of a table that is suspended on a ring, which in turn is placed on an arbor to fit the taper hole in the spiral head. The head can be set to any desired angle to 10°, and the table will take the same position, keeping the centres always in line. When placed at the required angle it is held in position by a clamp screw that slides in a knee clamped to the table of the machine.

The foot-stock of the attachment slides in a T slot 5-8" wide, and can be placed to take in work to $41-4^{\prime \prime}$ in diameter and $17^{\prime \prime}$ in length.

In ordering, give number of machine, which is stamped on the front of frame.
Weight, about 40 lbs.
Price, 8

HAND MILLING ATTACHMENT

For No. 0 Plain Milling Machine With Rack Feed.

The No. 0 Plain Milling Machine, Rack Feed, can be quick iy changed by means of this attachment into a hand milling machine with or without automatic longitudinal feed.

An apron, piaceu ou the outside end of the knee, carries Blever attached to a segment of a gear which runs in a pinion placed over the end of the shait that moves the table longitudinally, and this lever when moved turns the shaft as the crank would if it were in position.

The attachment, w.th a knee having a working surface of $8^{\prime \prime} \times 53-4^{\prime \prime}$, is clamped on the table and on this the fixtures for holding the work can be fastened as on a hand milling machine. When brought to position the lever can be held by the catch in the holder, shown at the left of the cut, Which can be released by a latch on the back of the lever, so that at the same time that the knee is returned to position the catch is released without an extra movement. While the lever is held down the feed can be thrown in and milling done as on a plain milling machine.

The top of the knee at its lowest position is $6^{\prime \prime}$ from the top of the table and can be raised $2^{\prime \prime}$.

With this Attachment in position the milling machine table has a transverse feed of $21-4^{\prime \prime}$. The longitudinal feed of the table by means of the lever and gear segment is $21-4^{\prime \prime}$, but with these removed the machine will feed $16^{\prime \prime}$ automatically. Net Weight, about 75 lbs . Price, $\$$

GEAR CUTTING ATTACHMENT.

This attachment is used for cutting gears or wheels larger .and heavier than can be cut with the usual fixtures belonging to a Milling Machine.

It is exceptionally rigid in construction, and designed to withstand the most severe service to which a tool of this character may be subjected.

The Centres swing $16^{\prime \prime}$ in diameter.
The Spindie is large in diameter; the front end is pro. Flded with a No. 11 taper hole, and is threaded to receive a face plate or other fixture for holding work. A straight hole, $1^{1.4}$ in diameter, extends from the bottom of the taper hole entirely through the spindle. The spindle can be rigidly clamped in position.

An adjustable rest, placed on the head stock, is provided as a support for the gear while being cut.

The Worm Wheel is $141-8^{\prime \prime}$ in diameter, and requires 60 revolutions of the worm for one complete revolution. The worm and worm wheel can be disengaged; and a handle as the back provides for turning the spindle by hand for set. ting or testing work. The worm and worm wheel are accurately cut, and covered to protect them from dust or injury.

The Index Plates divide all numbers to 100, all even num. bers to 134; and all numbers divisible by 4 to 200 .
The Tongues are reversible, and fit T slots either $6.8^{\prime \prime}$ or $8-4$ wide.
combined Length of head and foot-stock, 21 1.2".
Fot Weight, about 185 lbs.
Weight, for shipment, about 290 lbs.
Dimensions of box for shipment. $26^{\prime \prime} \times 23^{\prime \prime} \times 22^{\prime \prime}$.
Price includes index plates, and tables explaining the use of same, wrenches, and everything else shown in cut.
Price, $\$$

ADJUSTABLE SWIVEL VISE.

This Vise, designed for use on the No. 2 Surface Grinding Machine, can be set at any angle with the T slots of the table and is pivoted so that it can be set at any angle to 40 degrees either side of the horizontal. A graduated are indicates this latter position.

The jaws are $5^{\prime \prime}$ wide, $1^{\prime \prime}$ deep, and will open $23.4^{\prime \prime}$.
The distance from the bottom of the base to the top of the jaws is $4^{\prime \prime}$. Weight, about 35 lbs. Price, $\$$

An Adjustable Swivel Vise is shipped with each No. 2 Surface Grinding Machine, and if it is not required, please pack carefully and return by express at our expense.

4 3-4 in. INDEX CENTRES.

These Index Centres, designed for use on the No. 2 Surface Grinding Machine, are convenient for grinding taps, reamers, formed cutters and work of a similar class.
The Index Plate has 24 holes and can beturned by a worm, or the worm can be disengaged and the plate turned by hand. The centres swing $43-4^{\prime \prime}$ in diameter and take $101-2^{\prime \prime}$ in length. Weight, about 10 lbs . Price, $\$$
A pair of Index Centres is shipped with each No. 2 Surface Grinding Machine and if not required, please pack carefully and return by express at our expense.

8 Inch and 12 Inch

SINGLE DIAL INDEX CENTRES.

These Index Centres are convenient for use onmilling or other machines where rapid indexing is to be done, as in cutting teeth in sprocket wheels, milis, or in milling nuts, etc., and swing respectively $8^{\prime \prime}$ and $12^{\prime \prime}$ in diameter.

The Spindles are threaded on the ends, and provided with No. 11 taper holes.

The Foot-stocks are provided with adjustable centres, but can be furnished with bearings instead of adjustable cen. tres when desired.

The Index Plates are dials provided with hardened steel bushings, and covered, thus protecting the holes from dirt. The plates are loosed by a hardened steel taper pin, which is forced into the bushing by a spring. It can be released by a lever, and the work rotated by a hand wheel, thus making the indexing very rapid. While the plates can be used, usually, for other than the number of teeth for which they are made, it is desirable to have them contain holes for the number of teeth to be cut, as mistakes can thus be avoided.

The Dials furnished have 24 holes. Special dials for $8^{\prime \prime}$ centres with any number of holes to 30 , and for the $12^{\prime \prime}$ cen. tres to 36 holes, made to order.

The Reversible Tongues and Bolts furnished with the $8^{\circ \prime}$ and the $12^{\prime \prime}$ fit a T slot $5-8^{\prime \prime}$ or $3-4^{\prime \prime}$ wide.
Net Weights : $8^{\prime \prime}$, without Table, about 50 lbs., with Table, about 180 lbs.; 12", without Table, about 110 lbs., with Table, about 230 lbs.

Weights for Shipment: $8^{n \prime}$, without Table, about 80 lbs.; $12^{\prime \prime}$, without table, about 160 'lbs.

Dimensions of boxes for shipment: $8^{\prime \prime}, 20^{\prime \prime} \times 10^{\prime \prime} \times 12^{\prime \prime}$; $1 \mathbf{1 2}^{\prime \prime}, 26^{\prime \prime} \times 13^{\prime \prime} \times 14^{\prime \prime}$.

Price, $8^{\prime \prime}$, without Table, $\$$
Price, 12", without Table, \$
Price, Special Dials, for $8^{\prime \prime}, \$$
with Table, 8 with Table, $\$$
each; for $12^{\prime \prime}, \$ \quad$ each.

For List of Tables, see page 86.

10 In. PLAIN INDEX CENTRES.

The Centres swing $101-4^{\prime \prime}$ in diameter.
The Spindle is threaded on front end and has a No. 10 taper hole. The stralght hole at end of taper is $11-16^{\prime \prime}$ in diameter.

The Worm Wheel is $61-2^{\prime \prime}$ in diameter, and one revolution is made by 40 revolutions of index crank. It has 24 holes and when the worm is disengaged direct indexing can be done and the wheel held by means of an index pin.

The Index Plates are the same as used on the Nos. 1, 11.2 and 2 Universal Milling Machines, see page 54.

The Head-stock can be clamped at any angle on table.
The Tongues and Bolts furnished ilt a T slot $5-\delta^{\prime \prime}$ wide. The tongues are inserted.

Combined Length of head and foot-stocks, 13 3-4".
Price includes index plates and tables explaining the use of same, wrenches, and everything else shown in cut.
Net Weight, without Table, about 55 llbs .; with Talle, about 155 lbs.

Weight for Shipment: Without Table, alout 70 lbs.
Dimensions of box for shipment, $16^{\prime \prime} \times 13^{\prime \prime} \times 11^{\prime \prime}$.
Price, without Table, \$ Price, with Table, $\$$

12 In. PLAIN INDEX CENTRES.

These Centres are of the same general design as the 10^{*} Index Centres described above.

The Centres swing $121-1^{\prime \prime}$ in diameter.
The Worm Wheel is $73-4^{\prime \prime}$ in diameter.
The Tongues and Bolts furnished fit a T slot $3-4^{\prime \prime}$ wide.
Combined Length of head and foot-stocks, $163-4^{\prime \prime}$.
Price includes index plates and tables explaining the use of same, wrenches, and everything clse shown in cut of $10^{\prime \prime}$ Index Centres.

Net Weight, without Table, about 65 lbs.; with Table, about 175 lbs.

Weight for shipment, without Table, about 8511 ,s.
Dimensions of box for shipment, $19^{\prime \prime} \times 14^{\prime \prime} \times 13^{\prime \prime}$.
Price, without Table, $\$$ Price, with Table, \$

No. 2 1-2 TRIPLE INDEX CENTRES. For Direct Indexing Only.

These index centres are convenient for use on Milling or other machines. They are well adapted for grooving taps and reamers, milling nuts, cutting small gears and other work of a similar character.

The Centres swing, using the three spindles $21-2^{\prime \prime}$, using the two outside spindles $5^{\prime \prime}$. The spindles are operated simultaneously by the movement of the index crank and clamped simultaneously by means of a thumb screw on front of head-stock.

The Index Plate furnished divides all numbers as follows : $2,3,4,5,6,7,8,12,14,20$ and 24.

The Foot-stock is provided with adjustable centres that can be clamped.

Combined Length of head and foot-stock 13 1-2".

The Tongues are reversible and fit T slots cither $1-2^{\prime \prime}$ or $5-8^{\prime \prime}$ wide.

Weight of Centres ready for shipment, about 100 lbs.

Net Weight, about 75 lbs.
Dimensions of box in which centres are shipped $21^{\prime \prime} \times 12^{\prime \prime} \times 10^{\prime \prime}$.

Price includes everything shown in cut, boxed and delivered f. o. b., Providence, R. I.

Price,

No. 14 TRIPLE INI

The Centres swing, using the th two outside spindles, $8^{\prime \prime}$.
The Spindles are operated sim ment of the index crank. The fr provided with No. 10 taper holes; taper is $11-16^{\prime \prime}$ in diameter. The the head clamps all three spindle

The Index Plates divide all nu numbers to 100. A plate for rapid directly on the centre spindle, and ing is desired, the worm, which quickly out of gear by means of head-stock.

The Foot-stock is provided witl Combined Length of head and f
The Tongues and Bolts furnish T slot $5-8^{\prime \prime}$ or $3-4^{\prime \prime}$ wide.

Weight of Centres ready for sh
Net Weight, about 150 lbs .
Dimensions of box in which ce $\times 12^{\prime \prime}$.

Price includes three index plate use of same, wrenches, and ev boxed and delivered f. o. b. Prov Price, \$

No. 4 TRIPLE IN1 For Direct Ind

These Centres are of the same as the No. 14, excepting that th Indexing only.

Price includes wrenches, etc., Providence, R. I.

Price, \$

INDEX TABLE FOR MILLING MACHINES.
 40 Turns to 1 Revolution.

Divis. ion.	Circle.	Turns.	Holes.	Division.	Circle.	Turns.	Holes.
					$\stackrel{ }{ }$		
23		20		18	\{27	2	
	[89	13	13	18	\{ 18	2	4
	33	13	11	19	19	2	2
	27	13	9	20	any	2	\cdots
	$\{21$	13	7	21	21	1	19
	18	13	6	22	33	1	27
	(15	13	5	23	23	1	17
$\begin{aligned} & 4 \\ & 5 \end{aligned}$	any	10	\ldots		[39	1	26
	any	8	\cdots		33	1	22
	[39	6	26	24	¢ 27	1	18
	33	6	22	24	$\{21$	1	14
	¢ 27	6	18		18	1	12
6	$\{21$	6	14		(15)	1	10
	18	6	12	25	20	1	12
	(15	6	10	26	39	1	21
7	\{49	5	35	27	27	1	13
	$\{21$	5	15	28) 49	1	21
8	any	5	\cdots	28	\{21	1	9
9	127	4	12	29	29	1	11
	\{18	4	8		[39	1	13
	any	4	-		33	1	11
11	33	3	21		27	1	9
	$(39$	3	13	30	$\{21$	1	7
	33	3	11		18	1	6
12	$\{27$	3	9		(15)	1	5
	21	3	7	31	31	1	9
	118	3	6		$\int 20$	1	5
12	15	3	5	32	$\{16$	1	4
13	39	3	3	33	33	1	7
14	\{ 49	2	42	34	17	1	3
	\{21	2	18		$\bigcirc 49$	1	7
	(39	2	26	3.7	$\{21$	1	3
	33	2	22		$\}_{27}$	1	3
) 27	2	18	36	$\{18$	1	2
15	$\{21$	2	14	37	37	1	3
	18	2	12	38	19	1	1
	(15)	2	10	39	39	1	1
	$\int 20$	2	10	40	any	1	1
16	$\left\{\begin{array}{l}18 \\ 16\end{array}\right.$	2 2	9 8	DEGREES.			
17	17	2	6	1	15	\ldots	2

AMERICAN MACHINIST, AUG. 24, 1899.
For Index Plates, sce page 54.

10 Inch

UNIVERSAL INDEX CENTRES.

Patented Feb. 5, 184 ; Fel. 14, 1848.

The Centres swing $10^{\prime \prime}$ in diameter.
The Head can le set at any angle from 10 degrees below the horizontal to 30 degrees beyond the perpendicular.

The Spindle has a No. 10 taper hole. The straight hole at end of taper is $11-16^{\prime \prime}$ in diameter. The front end is threaded.

The Foot-stock Centre can be ralsed vertically and set at an angle in a vertical plane.

Combined Length of head and foot stock, 17^{n}.
The Index Plates divide all numbers to 50 , all even num. bers to 100 and a large number beyond.
The Tongues and Bolts furnished fit a \mathbf{T} slot $5-\mathrm{s}^{\prime \prime}$ wide. The tongues are inserted.

Net Weight, without Table, about 85 lbs.; with Talle, about 200 lbs.

Weight, for shipment, without Table, alout 100 lbs
Dimensions of box for shipment, $16^{\prime \prime} \times 13^{\prime \prime} \times 12^{\prime \prime}$.
Price includes index plates and tables explaining the use of same.

Price, without Table, $\$ \quad$ Price, with Talle, $\$$
For List of Talles, see page 86.
12 1-2 Inch

unvasal mini cemmas Patented Fel, 5, 1884; Fel. 14, 1898.

Dgarzed by Google

12 1-2 Inch

UNIVERSAL INDEX CENTRES.

The Centres swing $121-2^{\prime \prime}$ in diameter.
The Head can be set at any angle from 10 degrees below the horizontal to 10 degrees beyond the perpendicular.

The Spindle is provided with a face plate and adjustable dog carrier. 'The front end has a No. 12 taper hole. The straight hole at end of taper is $11-2^{\prime \prime}$ in diameter.

The Worm Wheel is $6^{\prime \prime}$ in diameter, and one revolution is made by 60 revolutions of index crank.

The Foot-stock Centre can be raised verts. cally and set at an angle in à vertical plane.
The Index Plates divide all numbers to 100 , all even numbers to 134 and all numbers divisible by 4 to 200 .

The Table is provided with flanges, is $8^{\prime \prime}$ long, $8^{\prime \prime}$ wide, and has 3 T slots $3-4^{\prime \prime}$ wide.

Combined Length of head and foot-stock, $18^{\prime \prime}$.

Centre Rest will take work to $31-8^{\prime \prime}$ in diameter.

Net Weight, with table, about 275 lbs.; without table, about 145 lbs.

Weight for shipment, with table, about 340 lbs; without table, about 220 lbs.

Dimensions of box for shipment, with table, $39^{\prime \prime} \times 16^{\prime \prime} \times 17^{\prime \prime}$; without table, $23^{\prime \prime} \times 17^{\prime \prime} \times 15^{\prime \prime}$.

Price includes index plates and tables explaining the use of the same, wrenches and everything else shown in cut.

Price, without table, $\$$
Price, with table, 8
TABLES FOR INDEX CENTRES.

Index Centres, Where Used.	Length Over All.	Width Over All.	Working Surface.	Width of T Slot.	Combined Length of Head and Foot Stock.	Weight.	Prioe.
$8^{\prime \prime}$ Single Dial	37 3-4"	$73.4{ }^{\prime \prime}$	$30 \mathbf{3 - 4} \mathbf{4} \times 5 \mathbf{1 4}^{\prime \prime}$	$5-8{ }^{\prime \prime}$	18 1-2"	110 lbs.	-
$10^{\prime \prime}$ Plain	373 -4	73.4	$303-4 \times 514$	5-8	13 3-4	110 "	\$
10" Universal	3734	73.4	303.4×51.4	5-8	17	110 "	\$
$12^{\prime \prime}$ Single Dial	$391-4$	$83-4$	32×6	3-4	17	140 "	¢
12" Plain	391-4	83-4	32×6	3-4	171.4	$140 \quad$ '	*
12 1-2" Universal	33	9	32×8	3-4	18	140 "	*

For Index Centres, see pages 7% to 85 .

PLAIN VISES

For Use Upon Milling or Planing Machines.

SIse.	Price.	Wiath or Jaw.	$\begin{aligned} & \hline \text { Depth of } \\ & \text { Jaw. } \end{aligned}$	Jaws Open.	Weight.
No. 1	81900	3 5.8' ${ }^{\prime \prime}$	15-16"	$11.2^{\prime \prime}$	10 lbs.
${ }_{6} 6$	1300	51.8	11.4	$23-4$	24 "
* 8	1800	61.8	19.16	$35-8$	43 "

The jawsare of steel and hardened unlessotherwise specifled.

FLANGED VISES

For Use Upon Milling or Planing Machines.

These Vises are provided with flanges for clamping them to the table of Milling or Planing Machines.

Size.	Price.	Width of Jaws.	Depth of Jaws.	Jaws Open.	Weight.
No. 1	$\$ 1350$	$41.8{ }^{\prime \prime}$	$11.16^{\prime \prime}$	$2^{\prime \prime}$	16 lbs.
" 2	1500	51.8	11.4	$23-4$	28 "
* 3	2300	$61-8$	19.16	$35-8$	50 "
" 4	3400	71.8	2	41.2	95 "

The jawsare of steel and hardened unless otherwise specified.

SWIVEL VISES

For Use Upon Milling or Pianing Machines.

These vises are especially convenient for angular milling or planing. The base is double, and the upper portion is graduated so that the vise may be set at any angle with the ways of the machine.

An improved method of clamping the lower and upper portions of the base insures great rigidity and compactness.

The No. 2 Vise can be used with the Nos. 1 and 2 Universal and Nos. 1 and 2 Plain Milling Machines, and the No. 3 with Nos. 3 and 4 Universal and Nos. 3, 4, 5 and 24 Plain Milling Machines.

Sizes.	Price.	Height.	Width of Jaws.	Depth of Jaws.	Jaws Open.	Net Weight.
No. 2	\$1800	$41.2^{\prime \prime}$	$51.8^{\prime \prime}$	$11.4{ }^{\prime \prime}$	2 3-4"	88 lbs.
No. 3	2500	53.16	61.8	1916	35.8	70 "

The jaws are hardened unless otherwise specified.

TOOL MAKERS UNIVERSAL VISES.

The base is double. The lower part is provided with a tongue, and is fastened to the table by two bolts, which fit into the table T slots. It has two sets of holes to allow for moving the vise back when set in a vertical plane. The upper part is a hinged knee, which swivels on the lower part of the base. The lower part of the knee is graduated and can be set at any angle in a horizontal plane. The upper part of the knee is hinged to the lower part in such a manner that it can be set at any angle, to 90°, in a vertical plane and clamped rigidly in position ly the nut on end of bolt forming the hinge, and the bracing levers shown at left of cut. The upper surface is graduated for setting the vise proper. The bolt forming the hinge is provided with a hardened steel dial graduated to 90°. The bracing levers are held in position ly the bolt shown in centre, and the bolts at the ends of the levers.

The vise proper swivels on the upper part of the hinged knee, can be set at any angle to the axis of the bolt forming the hinge and clamped in position by the bolt which holds the upper bracing lever.
The Jaws are made of tool steel, hardened. Each vise is furnished with suitable wrenches.
Dimensions of boxes in which vises are shipped: No. 2, $15^{\prime \prime} \times 12^{\prime \prime} \times 9^{\prime \prime} ;$ No. 3 , approximate, $20^{\prime \prime} \times 15^{\prime \prime} \times 10^{\prime \prime}$.
Price of No. 3 furnished upon application.

No. 1

8 in. x 24 in.

UNIVERSAL GRINDING MACHINE.

> Patented August 12, 1890; May 26, 1891 ; November 8, 1898; June 30, 1903.

This machine swings $8^{\prime \prime}$ in diameter and takes $24^{\prime \prime}$ in length.

8 in. $\times 24 \mathrm{in}$.

UNIVERSAL GRINDING MACHINE. With Automatic Feeds.

The Wheel Spindle is hardened, ground and lapped and runs in self algning bronze boxes provided with means of compensation for wear. It will take wheels to $\mathrm{s}^{\prime \prime}$ in diam. cter and 3-8" face.

The Wheel Stand Slide swivels and has a graduated base. When the Internal Grinding Fixture, page 98 , is used, the wheel stand is removed and a speed counter substituted.
The Transverse Movement of wheel stand is adjusted by a hand wheel graduated to read to thousandths of an inch on the diameter of the work.

The Automatic Cross Feed gives a range of feed varying from $.00025^{\prime \prime}$ to $.004^{\prime \prime}$ to each reversal of table and can be automatically reieased at any point.

The Swivel Table turns on a central stud. It can be set at an angle to the ways. This adjustment is made by means of a screw at the end of table and scales, graduated to read to $31-2$ degrees either side of centre line and to 1 1-2" taper per foot, indicate its position. It has a T slot $5-8^{\prime \prime}$ wide.

The Travel of Table is automatic in either direction and controllea by dogs operating against the reversing lever. The dog brackets slide upon a rack and are held in position by a spring latch that prevents the dogs slipping. The dogs can be raised and the table moved beyond the reversing points without changing the adjustment.

The Head-stock is clamped to swivel table. It swivels and has a graduated base. The spindle is hardened, ground and lapped and runs in bronze boxes provided with means of compensation for wear. The front end is threaded and has a taper hole. The spindle can be locked and, with a pulley on the end, grinding can be done on dead centres.
The Foot-stock is clamped to swivel table by bolt and nut. The spindlecan be quickly operated by a lever. The spindle has a taper hole.

The Head and Foot-stock Centres swing 8° in diameter and take $24^{\prime \prime}$ in length.
Wet Grinding is amply provided for. Provision is made Sor a liberal supply of water; the supply pipes are large. Water guards, channels andi pans protect the floor and return the waste water to the settling tank and pump. The wheal guard is heavy and ot such form as to catch the spray and waste water from the wheel.

The Counter-snaft has tight and loose pulleys 8 ' in diameter for $3^{\prime \prime}$ belt and should run 280 revolutions per minute.
Weight of machine ready for shipment, about 2750 lbs.
Net Weight, about 2120 lbs. Floor Space, $36^{\prime} \mathbf{x} 92^{\prime \prime}$.
Dimensions of box in which machine is shipped, $\dot{7} 1^{\prime \prime} \times 39^{\prime \prime}$ x 54".
Price includes No. 03 Internal Grinding Fixture, 4" 3 -jawed chuck, centre rest, plain back rest, 2 universal back rests, set of telescopic water guards, emery wheel, set of dogs, wrenches and everything else shown in cut, together with overhead works, boxed and delivered f.o.b. at Providence, R. I.

No. 2

$12 \mathrm{in} . \times 30 \mathrm{in}$.
 UNIVERSAL GRINDING MACHINE.

Patented Aug. 12, 1890; May 26,1891 ; Sept. 21, 1897 ;
Nov. 8, 18:8; June 30, 1903.

This machine swings $12^{\prime \prime}$ in diameter, and takes $30^{\prime \prime}$ between centres.

No. 412 in. $\times 60$ in. UNIVERSAL GRINDING MACHINE.

 With Automatic Feeds.The Wheel Spindle is hardened, ground and lapped and runs in self-aligning bronze boxes provided with means of compensation for wear. It will take wheels to $12^{\prime \prime}$ in diam. eter and from $1-2^{\prime \prime}$ to $1^{\prime \prime}$ face.

The Wheel Stand Slide swivels and has a graduated base. When the Internal Grinding Fixture, page 98, is used, the wheel arbor is removed and a speed spindle substituted.

The Transverse Movement of wheel stand is adjusted by a hand wheel graduated to read to thousandths of an inch on the diameter of the work.

The Automatic Cross Feed gives a range of feed varying from $.00025^{\prime \prime}$ to $.004^{\prime \prime}$ to each reversal of table and the feed can be automatically released at any point.

The Swivel Table turns on a central stud. It can be set at an angle to the ways. This adjustment is made by means of a screw at the end of table; and scales, graduated to read to $31-2$ degrees either side of centre line and 11 1-2" taper per foot, indicate this position. It has a T slot $3-4^{\prime \prime}$ wide.

The Travel of Table is antomatic in either direction and controlled by adjustable dogs operating against the reversing lever. The dog brackets slide upon a rack and are held in position by a spring lateh that prevents the dogs slipping. The dogs can be raised and table moved beyond reversing points without changing the adjustment.

The Head-stock swlvels and has a graduated base. The spindle is hardened, ground and lapped and runs in bronze boxes provided with means of compensation for wear. The front end is threaded and has a taper hole.

The Foot-stock is clamped to swivel table by a lever. The front end of spinde has a taper hole.

The Head and Foot-stock Centres swing $12^{\prime \prime}$ in diameter and take $60^{\prime \prime}$ in length.

Wet Grinding is amply provided for. Provision is made for a liberal supply of water; the supply pipes are large. Water guards, channels and pans protect the floor and re. turn the waste water to the settling tank and pump. The wheel guard is heavy and of such form as to catch the spray and waste water from the wheel.

The Counter-shaft has tight and loose pulleys $12^{\prime \prime}$ in diameter for $31-2^{\prime \prime}$ belt and should run from 300 to 320 revolutions per minute.

Weight of machine ready for shipment, about 6130 lbs.
Net Weight, about 4900 lbs . Floor Space, $50^{\prime \prime} \times 20{ }^{\prime \prime}$.
Dimensions of box in which machine is shipped, $121^{\prime \prime} x$ $65^{\prime \prime} \times 48^{\prime \prime}$.

Price includes No. 4 Internal Grinding Fixture, 6" 3-jawed chuck, back rest with water guards, 2 universal back rests, centre rest, 2 emery wheels, set of dogs, set of telescopic water guards, wrenches and everything else shown in cut, together with overhead works, boxed and delivered f. o. b. at Providence, R. I. Price, \$

For Attachments, see dares 120 to 122 .

INTERNAL GRINDING FIXTURES.

Patented June 10, 1890.

This is an improvement upon earlier fixtures, and with it holes can be readily and accurately ground.

Formerly it was customary to employ a solid spindle or ahaft, with a driving pulley at one end and a small wheel at the other end. To grind holes of any considerable depth the end of the spindle projected a corresponding distance beyond the bearing, and any. motion or play in the bearing was multiplied at the end of the spindie so that oven a slight motion or play in the bearing caused a considorable movement at the end of the spindle and necessarily produced imperfect work. In order to give it sufficient Figidity the spindle was made of a considerable diameter, but this large diameter rendered impossible the attainment of the high speed requisite for thoroughly efficient work. Also, when pressure was brought upon the end of the spindle by the action of the wheel upon the work, this pressure tonded to force the spindle against its bearing with considerable power, owing to the leverage, due to the distance between the grinding wheel and the bearing, and this produced a great amount of friction between the spindie and the bearing and tended to prevent the attainment of high_speeds.

[^0]Provision is made for excluding dust from the lonarings.
One of these fixtures is sent with and included in the price of each of our Universal Grinding Machines.

Capacity of Internal Grinding Firtures.

01	1	$3^{\prime \prime}$	$11.2 "$	1.4" to 1-2"	3-32"	16800
1	2,3 and 4	4 5-8	11.2	1.4 to 1.2	3.32	16800
02	1	3	3 3-4	7.16 to 7.8	1.4	13400
2	2, 3 and 4	45.8	33 -4	7.16 to 7.8	1.4	13400
03	1	3	5 5-4	3.4 to 11.8	1.4	12:200
3	2, 3 and 4	45.8	51.4	3.4 to 11.8	1.4	$1 \because 200$
04	-1	3	6	1 and upward	5.8	11200
4	2,3 and 4	4 5-8	6	$\begin{aligned} & 1 \text { and } \\ & \text { upward } \end{aligned}$	5-8	11200
5	2, 3 and 4	45.8	8	$\begin{aligned} & 2 \text { and } \\ & \text { upward } \end{aligned}$	3.4	8050

Fixture No. 03 is sent with the No. 1 Universal Grinding Machine.

Fixture No. 4 is sent with the Nos. 2, 3 and 4 Universal Grinding Machines Improved.

If any other size is preferred it will be forwarded at the expense of the customer, the fixture sent with the machine being returned without expense to us.
Price includes 2 emery wheels and everything else shown in cut.

Price, Nos. 02, 03, 04, 2, 3, 4, 5; \$
Price, Nos. 1, 01 ; \$
Special sizes made to order.

No. 11 4 in. $\times 30 \mathrm{in}$.

PLAIN GRINDING MACHINE.

With Automatic Feeds.

The Wheel Spindle is hardened, ground and lapped, and runs in self-aligning bronze boxes provided with means of compensation for wear. It will take wheels to 12 " in diameter and from 1-2" to $3-4^{\prime \prime}$ face.

The Wheel Slide is adjusted by a hand wheel and dial. The dial is graduated to read to thousandths of an inch on the diameter of the work.
The Automatic Cross Feed sizes the work to within 000125°. The simple pressing of a thumb latch regulates the feed; the mechanism doing the sizing correctly.

The Swivel Table turns on a large central stud, which is hardened and ground. It can be set at an angle to the ways. This adjustment is made by means of a screw at the end of the table; and a scale, graduated to read to $13.4^{\prime \prime}$ taper per foot either side of the centre line, indicates the adjustment.

The Travel of Table is automatic in either direction; and controlled by dogs, which are easily adjusted, operating against a sliding pin on the reversing lever.

The Head-stock is clamped to the swivel table.
The Foot-stock is clamped to the swivel table. The spindle is adequately protected from water and emery grit. It is quickly operated by a lever.

Wet Grinding is amply provided for. The side of the swivel table toward the wheel is entirely closed, thus protecting the guiding ways of the head and foot-stock and avoiding the necessity of water guards. A large pump and suitable piping provides for an abundant supply of water.

The Follow Rest is held in an overhanging arm, and can be easily turned out of the way or placed in position.

The Counter-shaft has tight and loose pulleys 12 " in diam. eter for $31-2^{\prime \prime}$ belt, and should run from 300 to 320 revolutions per minute.
Weight of machine ready for shipment, about 3225 lbs .
Net Weight, about 2475 lbs .
Floor Space, $41^{\prime \prime} \times 105^{\prime \prime}$.
Dimensions of box in which machine is shipped, $78^{\prime \prime} \times 46^{\prime \prime}$ $\times 59^{\prime \prime}$.
Price includes plain back rest, 2 universal back rests, set of dogs, centre grinding attachment; $1,12^{\prime \prime}$ emery wheel, $1.2^{\prime \prime}$ face, $5^{\prime \prime}$ hole; wrenches and everything else shown in cut, together with overhead works, boxed and delivered f. o. b. at Providence, R. I.

Price, $\$$
For Attachments, see pages 120 to 122.

No. 14
 10 in. $x 48$ in. PLAIN GRINDING MACHINE.

 With Automatic Feeds.

 With Automatic Feeds.}

The Wheel Spindle is hardened, ground and lapped, and runs in self aligning bronze boxes provided with means of compensation for wear. It will take wheels to 18 " in diam cter and from 3-4" to 1 1-2" face.
The Wheel Slide is adjusted by a hand wheel and dial. The dial is graduated to read to thousandths of an inch on the diameter of the work.
The Automatic Cross Feed sizes the work to within . 00025°. The simple pressing of a thumb latch regulates the feed; the mechanism doing the sizing correctly.
The Swivel Table turns on a large central stud, which is hardened and ground. It can be set at an angle to the ways. This adjustment is made by means of a screw at the end of the table; and a scale, graduated to read to 2 "t taper per foot either side of the centre line, indicates the adjustment.
The Travel of Table is automatic in either direction, and controlled by dogs, which are easily adjusted, operating against a sliding pin on the reversing lever.
The Head-Stock is clamped to the swivel table.
The Foot-Stock is clamped to the swivel table. The spindle is adequately protected from water and emery grit. It is quickly operated by a lever.
Wet Grinding is amply provided for. Provision is made for a liberal supply of water; the supply pipes are large. Water guards, channels and pans protect the floor and return the waste water to the settling tank and pump. The wheel guard is heavy and of such form as to catch the spray and waste water from the wheel.
The Counter-shaft has tight and loose pulleys $14^{\prime \prime}$ in diameter for $41-2^{\prime \prime}$ belt, and should run from 395 to 410 revolutions per minute.

Weight of machine ready for shipment, about 7220 lbs .
Net Weight, about 5875 lbs.
Floor Space, 53"x 159".
Dimensions of box in which machine is shipped, $110^{\prime \prime} \times 57^{\prime \prime}$ $\times 60^{\prime \prime}$.
Price includes plain back rest, 2 universal back rests, centre rest, centre grinding attachment, set of dogs, set of telescopic water guards, $1,18^{\prime \prime}$ emery wheel, $1^{\prime \prime}$ face, $5^{\prime \prime}$ hole; $1,18^{\prime \prime}$ emery wheel, $11-2^{\prime \prime}$ face, $5^{\prime \prime}$ hole; wrenches and everything else shown in cut, together with overhead works, boxed and delivered f.o.b. at Providence, R. I.
Price, $\$$
For Attachments, see pages 120 to 122 .
No. $16 \quad 10 \mathrm{in}. \times 72 \mathrm{in}$.

- Ginearoy Google

No. 16 10 in. $x 72$ in. PLATN GRINDING MACHINE.

With Automatic Feods.

The Wheel Spindle is hardened, ground and lapped, and runs in self aligning bronze boxes provided with means of compensation for wear. It will take wheels to $18^{\prime \prime}$ in diameter and from $3-4^{\prime \prime}$ to 1 1-2" face.
The Wheel slide is adjusted by a hand wheel and dial. The dial is graduated to read to thousandths of an inch on the diameter of the work.
The Automatic Cross Feed sizes the work to within $.00025^{\prime \prime}$. The simple pressing of a thumb latch regulates the feed; the mechanism doing the sizing correctly.

The Swivel Table turns on a large central stud, which is hardened and ground. It can be set at an angle to the ways. This adjustment is made by means of a screw at the end of the table; and a scale, graduated to read to $11-2^{\prime \prime}$ ta per per foot either side of the centre line, indicates the adjustment.

The Travel of Table is automatic in either direction, and controlled by dogs, which are easily adjusted, operating against a sliding pin on the reversing lever.

The Head-stock is clamped to the swivel table.
The Foot-stock is clamped to the swivel table. The spindie is adequately protected from water and cinery grit. It can be operated by a lever or hand wheel as desired.

Wet Grinding is amply provided for. Provision is made for a liberal supply of water; the supply pipes are large. Water guards, channels and pans protect the floor and return the waste water to the settling tank and pump. Tite wheel guard is heavy and of such form as to catch the spray and waste water from the wheel.

The Counter-shaft has tight and loose pulleys $14^{\prime \prime}$ in diameter for $41-2^{\prime \prime}$ belt, and should run from 395 to 410 revolutions per minute.

Weight of machine ready for shipment, about 7990 lbs .
Net Weight, about 6490 lbs.
Dimensions of boxes in which machine is shipped, 114" x $57^{\prime \prime} \times 60^{\prime \prime}$, and $1355^{\prime \prime} \times 9^{\prime \prime} \times 9^{\prime \prime}$.

Floor Space, 53" x 214".
Price includes plain back rest, 2 universal back rests centre rest, centre grinding attachment, set of dogs, set of telescopic, water guards, $1,18^{\prime \prime}$ emery Wheel, $1^{\prime \prime}$ face, $5^{\prime \prime}$ hole; $1,18^{\prime \prime}$ cmery wheel, $11-2^{\prime \prime}$ face. $5^{\prime \prime}$ hole; wrenches, etc., together with overhead works, boxed and delivered f. o. b. at Providence, R. I.

Price, $\$$

For Attachments, see pages 120 to 122.

No. 2

$18 \mathrm{in} \times$.6 in. $\times 91-2 \mathrm{in}$. SURFACE GRINDING MACHINE.

The table has an automatic longitudinal feed of $18^{\prime \prime}$, a transverse movement of $6^{\prime \prime}$, and work $91-2^{\prime \prime}$ high can be ground.

No. 2

18 in. $\times 6$ in. $\times 9$ 1-2 in.

SURFACE GRINDING MACHINE.

The Spindle is hardened, ground and lapped and runs in bronze boxes provided with means of compensation for wear. Theend is tapered to receive wheel sleeves. It can be raised or lowered by means of a hand wheel graduated to read to one-half thousandths of an inch. It will take wheels to $7^{\prime \prime}$ in diameter and $1-2^{\prime \prime}$ face.

The Table is $46^{\prime \prime}$ long and $8^{\prime \prime}$ wide, has a working surface $18^{\prime \prime} \times 6^{\prime \prime}$ and 3 T slots $1-2^{\prime \prime}$ wide.

The Travel of Table is automatic in either direction and is controlled by means of dogs operating against a reversing lever. The lever can be turned down and the table moved beyond the reversing points without changing the dogs.

The Transverse Movement of table is automatic, feeds at the end of each stroke and can be easily changed to feed in either direction.

This Machine grinds work to $18^{\prime \prime}$ long, $6^{\prime \prime}$ wide and $91-2^{\prime \prime}$ bigh, using a wheel $7^{\prime \prime}$ in diameter.

The Vise is flanged and has jaws $41-8^{\prime \prime}$ long, $11-16^{\prime \prime}$ deep, and will open $2^{\prime \prime}$.

ThenCounter-shaft has tight and loose pulleys $8^{\prime \prime}$ in diam. eter for $3^{\prime \prime}$ belt and should run 360 revolutions per minute.

Weight of machine ready for shipment, about 1685 lbs .
Net Weight, about 1210 lbs.
Floor Space, $65^{\prime \prime} \times 30^{\prime \prime}$.
Dimensions of box in which machine is shipped, $49^{\prime \prime} \times 37^{\prime \prime}$ x $73^{\prime \prime}$.

Price includes No. 1 Flanged Vise, $1,7^{\prime \prime}$ emery wheel, $1-2^{\prime \prime}$ face, $11.4^{\prime \prime}$ hole; wrenches and everything else shown in cut, together with overhead works, boxed and delivered f. o. b. at Providence, R. I.

Price, \$
For Adjustable Swivel Vise and Index Centres, see page 77.

No. 3
36 in. $\times 14$ in. $\times 111-2 \mathrm{in}$. and $60 \mathrm{in} . \times 14 \mathrm{in} . \times 11$ 1-2 in. SURFACE GRINDING MACHINES.

Patented August 12, 1890.

This machine grinds work to $36^{\prime \prime}$ long, $14^{\prime \prime}$ ride and $111-2^{\prime \prime}$ high.
It is also made to grind work $60^{\prime \prime}$ long, $14^{\prime \prime}$ wide and 11 1-2" high.

No. 3

$36 \mathrm{in}. \times 14 \mathrm{in} . \times 11$ 1-2 in. and

 $60 \mathrm{in} . \times 14 \mathrm{in} . \times 111-2 \mathrm{in}$.
SURFACE GRINDING MACHINES.

The Spindle is hardened, ground and lapped and runs in self-aligning bronze boxes provided with means of compen. sation for wear. It will take wheels to 12 " in diameter, and $5-8^{\prime \prime}$ face.

The Wheel Slide has a transverse movement that is antomatic and can be easily changed to feed in either direction. It feeds at the end of each stroke.

The Table, including dust guards, is 84 " long and $141^{\prime \prime}$ ", wide, has a working surface $44^{\prime \prime} \times 141-4^{\prime \prime}$ and 3 T slots 11-16" wide.

The Travel of Table is automatic in either direction. It is controlled by means of dogs operating upon a reversing lever trip pin. This pin can be lowered and the table moved beyond the reversing points without changing the dogs.
This machine grinds work to $36^{\prime \prime}$ long, $14^{\prime \prime}$ wide and $1112^{\prime \prime}$ high. Distance between uprights, 22 1-2".

The Counter-shaft has tight and loose pulleys $8^{\prime \prime}$ in diam. eter for $4^{\prime \prime}$ belt, and should run about 320 revolutions per minute.

Weight of machine ready for domestic shipment, about 2675 lbs.

Weight of machine ready for foreign shipment, about 3085 llbs.

Net Weight, about 2300 lbs.
Floor Space, 128" x 39".
Dimensions of box in which machine is shipped, $90^{\prime \prime} \times 39^{\prime \prime}$ $\times 56^{\prime \prime}$.
Price includes $1,12^{\prime \prime}$ emery wheel, $1-2^{\prime \prime}$ face, $5^{\prime \prime}$ hole; $1,9^{\prime \prime}$ emery wheel, $5-8^{\prime \prime}$ face, $5^{\prime \prime}$ hole; and everything else shown in cut, together with overhead works boxed and delivered f. o. b. at Providence, R. I.

Price, $\$$
This machine is also made to grind work to $60^{\prime \prime}$ in length.
Weight ready for domestic shipment, about 3180 llss .
Weight ready for foreign shipment, about 3590 llss .
Net Weight, about 2725 lbs.
Floor Space, 192" x 39".
Dimensions of box in which machine is shipped, 103" x 89' $\times 56^{\prime \prime}$.
Price,

No. 0 TOOL GRINDER.

This machine is expecially adapted for grinding the small formed cutters and tools used on serew machines.

The Spindle is hardened and ground and runs in bronze boxes provided with means of compensation for wear. The ends of the spindle are tapered to recelve the wheel sleeves. It will take wheels to $7^{\prime \prime}$ diameter and $3-8^{\prime \prime}$ face. It has tight and loose pulleve, 21.2" in diameter for $1^{\prime \prime}$ belt.
Distance from centre of spindle to bottom of base, $81 . \mathbf{2 n}^{n}$.
Weight of machine ready for shipment, about 50 lbs.
Net Weight, about 35 lhs.
Dimensions of box in which machine is shipped, $16^{\prime \prime} \times 10^{\prime \prime}$ $\times 13^{\prime \prime}$.

Price includes two emery wheels, two emery wheel sleeves, wrench and everything else shown in cut, boxed and deliv ored f. o. b. at Providence, R. I.
Price, $\$$
Price, with overhead works, $\$$

Overhead Works.

The Overhead Works, furnished only when specified, consist of two wall hangers and shaft wit', 1 pulley $6^{\prime \prime}$ diameter, for $2^{\prime \prime}$ belt, for main line drive; and 1 pulley $12^{\prime \prime}$ diameter for driving the machine spindle. The counter-shaft shonld run about 460 revolutions per minute.
Weight for shipment, about 100 llis .
Net Weight, about 80 lbs. Price, $\$$

No. 1 TOOL GRINDING MACHINE:

The Spindle is of steel hardened and ground, and runs in bronze boxes provided with means of compensation for wear. The ends of the spindle are tapered to receive wheel sleeves.

The Counter-shaft has tight and loose pulleys $\mathrm{b}^{\prime \prime}$ in diameter for $2^{\prime \prime}$ belt, and should run about $37 \overline{5}$ rev. per minute.

Weight of machine ready for domestic shipment, about 215 lbs .; for foreign shipment, about 415 lbs.

Net Weight, about 280 lbs.
Floor Space, $16^{\prime \prime} \times 18^{\prime \prime}$.
Dimensions of box for shipment, $52^{\prime \prime} \times 21^{\prime \prime} \mathrm{x} 21^{\prime \prime}$.
Price includes two emery wheels, two wheel sleeves, 1 1-4", rests and everything else shown in cut, together with overhead works, boxed and delivered f. o. b. at Providence, R.I.

Price, 8

No. 2 CUTTER GRINDING MACHINE.

Patented March 22, 1887;

This machice will take cutters to $6^{\prime \prime}$ in length and $6^{\prime \prime}$ in diameter, and saws to $24^{\prime \prime}$ diameter.

The Spindle is hardened, ground and lapped, and runs in bronze boxes provided with means of compensation for wear. The ends of Spindle are tapered to receive Wheel Sleeves.

The Cone has 2 steps for $1^{\prime \prime}$ belt.
The Cutter Bar is of steel hardened and ground.
The Counter-shaft has tight and loose pulleys $6^{\prime \prime}$ in diameter for $2^{\prime \prime}$ belt, and should run about 375 rev. per minute.

Weight of machine ready for shipment, about 585 lbs .
Net Weight, about 380 lis. Floor Space, $27^{\prime \prime} \times 34^{\prime \prime}$.
Dimensions of hox for shipment, $36^{\prime \prime} \times 29^{\prime \prime} \times 51^{\prime \prime}$.
Price includes Compound Swivel Head, Rest Holder, $\mathbf{3 . 4} \mathbf{4}^{n}$ Cutter Bar, $7-8^{\prime \prime}$ Cutter Shell with collars and nut, Arbor for holding Straddle and Face Mills, etc., 2 Taper Shank Mill Bushings; 2, 1 1-4" Wheel Sleeves; 1 pair Step Collars, 11-2", $13-4^{\prime \prime}, 2^{\prime \prime} ; 2,6^{\prime \prime}$ Bevel and Concave Emery Wheels, 1 1-4 hole; 1, $6^{\prime \prime}$ Emery Wheel, $1-4^{\prime \prime}$ face, $11-4^{\prime \prime}$ hole, and everything else shown in cut, together with overhead works boxed and delivered f. o. 1. at Providence, R. 1. Price, $\$$

For Formed Cutter Grindimg Atforigient, see page 118.

VARIOUS OPERATIONS ON THE

No. 3 UNIVERSAL CUTTER AND REAMER GRINDER.

Grinding Solid Taper Reamer.

Grinding
Slde Milling Cutter.

Grinding Side of Face Mill.

Grinding Milling Cutter or Shell Reamer.

Grinding End Mill.

Grinding Angular Cutter.

Ha 3 UNIVERSAL COTTER AND REAMER GRINDER.

Pabetated March 코, 185; Oct. 29, 1891.

This machine takes 18° between centres, and suties catters and shell reamers not exceeding $\${ }^{*}$ in diameter and i^{\prime} in length.

No. 3 UNIVERSAL

CUTTER AND REAMER GRINDER.

This machine is used for sharpening straight and taper, shell or shank reamers, and for grinding edge and bevel cutters of any angle, straddle and face mills, cotter and hollow mills and straight or taper milling cutters, cut either straight or spiral, with holes or shanks. It can also be used for sharpening worm and thread tools.

The Spindle is of steel, hardened, ground, and lapped, and runs in bronze boxes provided with means of compensation for wear. The ends of the Spindle are tapered to recelve Wheel Sleeves.

The Cone has 2 steps for $1^{\prime \prime}$ belt.
The Guide Bar and Cutter Bars are of steel hardened, ground and lapped.

The Counter-shaft has tight and loose pulleys $6^{\prime \prime}$ in diameter for $2^{\prime \prime}$ belt and should run about 375 revolutions per minute.

Weight of machine ready for shipment, about 750 ll s.
Net Weight, about 490 lbs.
Floor Space, $\mathbf{3 8}^{\prime \prime}$ x $58^{\prime \prime}$.
Dimensions of box in which machine is shlpped, $42^{\prime \prime} \times 80^{\prime \prime} \mathrm{x}$ 52^{n}.

Price includes Compound Swivel Head, Reamer Centres, Rest Holder, $3.4^{\prime \prime}$ Cutter Bar, 3-8" Cutter Bar, Thread and Worm Tool Holder, 7.8 ${ }^{\prime \prime}$ Cutter Shell with collars and nut, takes all cutters with $7-8^{\prime \prime}, 1^{\prime \prime}, 11-16^{\prime \prime}, 11-8^{\prime \prime}$ or $11-4^{\prime \prime}$ hole; 1-2" Cutter Shell with collars and nut, takes all cutters with $1-2^{\prime \prime}, 5-8^{\prime \prime}$, or $3-4^{\prime \prime}$ hole; A rbor for holding Straddle and Face Mills; Angular Cutters, etc., takes all cutters with 1 1-4", $1^{\prime \prime}$ or $7-8^{\prime \prime}$ hole; 2 Wheel Sleeves $11^{\prime \prime} 4^{\prime \prime}, 2$ Taper Shank Mill Bushings, 2 Main Bar Stops; 3-4" Swivel Head Bushing, 3-8" ${ }^{\prime \prime}$ Swivel Head Bushing; 1 pair Step Collars, 1 1-2", 1 3-4", $2^{\prime \prime} ; 2,6^{\prime \prime}$ Bevel and Concave Emery Wheels, 3-8" face, 1 14" hole; 1, $6^{\prime \prime}$ Emery Wheel, $1.4^{\prime \prime}$ fice, $11.4^{\prime \prime}$ hole; 1, $5^{\prime \prime}$ Emery Wheel, $1-4^{\prime \prime}$ face, $8-4^{\prime \prime}$ hole; $1,2^{\prime \prime}$ Emery Wheel, $1-4^{\prime \prime}$ face, $1-4^{\prime \prime}$ hole; and everything else shown in the cut, toganer with overhead works boxed and delivered f. o. b. at Providence, R. I.

Price, $\$$
The Formed Cutter Grinding Attachment is readily attached to the machine, and can be used equally well with either a machine of the old or new design. Sce page 118.
Price, $\$$
A special pamphlet on the construction and use of this machine is sent on application.

No. 13
 UNIVERSAL AND TOOL GRINDING MACHINE.

Patented March 25, 1902.

This machine takes 24 1-2' ${ }^{\prime \prime}$ in length between centres and centres swing $8^{\prime \prime}$ in diameter.

No. 13 UNIVERSAL AND TOOL GRINDING MACHINE.

With Power Table Feed.

This machine combines the features of a Universal Grind. ing Machine, together with such features as adapt it to the sharpening of bevel cutters of any angle, milling cutters, formed cutters, straddle and face mills, straight or taper reamers, end mills etc., also for grinding all cylindrical work, either straight or taper, that can be held between centres.
The Wheel Spindle is hardened, ground and lapped and runs in phosphor bronze boxes, provided with means of compensation for wear. The ends of the spinule are tapered to receive wheel sleeves.
The Wheel Slide has a vertical adjustment of 6^{n}, operated by a hand wheel graduated to read to thousandths of an inch.
The Upright that carries the spindle head swivels and has a graduated base. It has a transverse movement of $101 \cdot 2^{\prime \prime}$, operated by a hand wheel, graduated to read to thousandths of an inch on the diameter of the work.
The Cutter Bars are hardened, ground and lapped.
The Swivel Table turns on a central stud. It can be set to 45° either side of centre line, the graduated are at the front reading to degrees. A scale at the end of table is graduated to read to $3^{\prime \prime}$ taper per foot.

The Table has a longitudinal feed of $17^{\prime \prime}$.
The Head and Foot-stock Centres swing $8^{\prime \prime}$ in diameter and take $241-2^{\prime \prime}$ in length.
The Counter-shaft has tight and loose pulleys $6^{\prime \prime}$ in diame. ter for $21.2^{\prime \prime}$ belt and should run 425 revolutions per minute.

Weight of machine ready for shipment, about 2735 lbs.
Net Weight, about 2170 lbs . Floor Space, $45^{\prime \prime} \times 69^{\prime \prime}$.
Dimensions of box for shipment, $56^{\prime \prime} \times 45^{\prime \prime} \times 66^{\prime \prime}$.
Price includes universal head, face chuck, set of dogs, centre height gauge; $3-4^{\prime \prime}$ cutter bar with $7-8^{\prime \prime}$ sliding shell and set of collars, including 4 stepped collars; $3-\mathrm{s}^{\prime \prime}$ cutter bar with bushing for universal head and $1-2^{\prime \prime}$ sifding shell, with set of collars, including 2 stepped collars; arbor for straddle and face mills and 3 collars, 2 taper shank mill bushings, 4 tooth rests and holders; 4 centres, including reamer grinding centre, centre rest, tool rest; wheel arbors; $1,1^{14^{\prime \prime}}$ R. H.; 1, $1.4^{\prime \prime}$ L. H.; 1, $1-2^{\prime \prime} ; 1,3.4^{\prime \prime} 6$ wheel sleeves; $1,1^{\prime \prime}$ emery wheel, $14^{\prime \prime}$ face; $1,2^{\prime \prime}$ emery wheel, $1-4^{\prime \prime}$ face; 1 , $4^{\prime \prime}$ cupped emery wheel, $13-8^{\prime \prime}$ thick; $1,7^{\prime \prime}$ cupped emery wheel, $2^{\prime \prime}$ thick; $1,3^{\prime \prime}$ emery wheel, $1-4^{\prime \prime}$ face, $2,7^{\prime \prime}$ emery wheels, $1-2^{\prime \prime}$ face; $1,6^{\prime \prime}$ emery wheel, $3-8^{\prime \prime}$ face; 1 , $31.2^{\prime \prime}$ bevel and concave emery wheel; $1,6^{\prime \prime}$ bevel and concave emery wheel; and everything else shown in cut, together with overhead works, boxed and delivered f.o.b. at Providence, R. I.

Price, with Power Table Feed, \$
For Attachments, see page 119.

FORMED CUTTER GRINDING ATTACHMENT

For No. 2 Outter Grinding Machine and No. 3 Universal Cutter and Reamer Grinder.

This attachment is used for grinding the tecth of Formed Cutters radially, this being necessary in order to insure their cutting the correct form. It consists of a bed rigidly attached to the main bar, that carries a sliding table provided with a pair of index centres between which the work to be ground is held.

Centres swing $43.4^{\prime \prime}$ in diameter and take 10 1.2" in length. The Index Plate has 24 holes and can be turned by a worm or the worm can be disengaged and the plate turned by hand.

Formed Cutters to $8^{\prime \prime}$ in diameter can be ground by the use of raising blocks.

Net Weight, about 70 lbs . Weight for shipment, about100 lbs.
Dimensions of box for shipment, $20^{\prime \prime} \times 13^{\prime \prime} \times 12^{\prime \prime}$.
Price, $\$$
For No. 2 Cutter Grinding Machine and No. 3 Universal Cutter and Reamer Grinder, secpages 112, 114, 115.

ATTACHMENTS

FOR

No. 13 UNIVERSAL AND TOOL GRINDING MACHINE.

SURFACE GRINDING ATTACHMENT.

The Wheel Spindle Extension is bolted to the wheel slicie and supported in self-aligning bearings. It allows the wheel to be used over the entire surface of the Table Plate.

The Table Plate has a working surface of $17^{\prime \prime} \times 73.8^{\prime \prime}$ and is $11-2^{\prime \prime}$ thick. It has 2 T slots, $1-2^{\prime \prime}$ wide, at right angles.

The Vise is mounted upon a hinged base that can be set to any angle from 0 to 90° in a vertical plane. A dial, graduated to degrees, indicates the setting. The jaws are hardened, $35-8^{\prime \prime}$ wide, $15-16^{\prime \prime}$ deep and will open $1-2^{\prime \prime}$. Height of vise, $4^{\prime \prime}$. Price, Attachment complete, $\$$

INTERNAL GRINDING ATTACHMENT.

This Attachment is driven by a belt from a pulley on the wheel spindle.

Distance from centre of spindle of attachment to centre of wheel spindle, $10^{\prime \prime}$. Length that 'an be ground, $3^{\prime \prime}$. Diameter of hole that can lie ground, $1-4^{\prime \prime}$ to $11.2^{\prime \prime}$.

Price includes 3 emery wheels, 3 extension wheel arbors, $4^{\prime \prime} 3$-jawed universal chuck, belt and driving pulley.

Price, $\$$

CIRCULAR GRINDING ATTACHMENT.

The slide swivels and has adjustable stops to controi the swivel movement. It has an adjustment of 4-2"; also a fine adjustment for feeding the work to the cut. A device for receiving the carbon point holder, furnished, can be quirkly mounted on the inner end of the slide for truing the wheel.

The Work Holders will take $5^{\prime \prime}$ in length and swing $8^{\prime \prime}$ in diameter. Price, $\$$

TOOL CUPBOARD

to accompany

No. 13 Universal and Tool Grinding Machine.

A Cupboard for holding the various parts and attachments that go with this machine, can be furnished. It is eatstantially made and fitted with shelves and brackets conveniently arranged.

Dimensions, height, $39^{\prime \prime}$; floor space, $16^{\prime \prime} \times 38^{\prime \prime}$.
Price, $\$$

120

UNIVERSAL BACK RESTS.

For Universal and Plain Grinding Machines.

The Back Rests are universal in all their movements and capable of the most delicate adjustment. They are simple in construction and readily placed in position or removed.

No.	Machines where used.	Price.
1	No. 1 Universal	8000
2	Nos. 2, 3 and 4 Universal	900
11	No. 11 Plain	800
14	Nos. 14 and 16 Plain	900

For Lists of Shoes, see pages 121 and 122.
Special Circular on application.

WATER GUARDS.

For Universal Grinding Machines.

These can be used on all Nos. 1 and 2 Universal Grinding Machines fitted with pumps; and all Nos. 3 and 4 Universal Grinding Machines delivered since January, 1899.

PRICE PER SET.
For No. 1 Universal Grinding Machine,
$\$ 550$
$\$ 6 \infty$
$\$ 7 \infty$
$\$ 8 \infty$

BRONZE SHOES

FOR UNIVERSAL BACK RESTS.

For Nos. 1 and 11.

Pattern No.	Diameter of Work.	Price each.	Pattern No.	Diameter of Work.	Price each.
1-3	1-4"	22 cts .	1-13	$11.2^{\prime \prime}$	22 ctg .
1-3	5.16	22	1-13	19.16	22
1-4	3-8	22	1-14	15.8	22
1-4	7.16	22	1-14	111.16	22
1-5	1.2	22	1-15	13.4	28
1-6	5-8	22	1-15	113.16	28
1-6	11.16	22	1-16	17.8	28
1-7	3.4	22	1-16	$115-16$	28
1-7	13-16	22	1-17	2	28
1-8	7.8	22	1-17	21.16	28
1-8	15-16	22	1-18	21.8	28
$1-9$	1	22	1-18	23 -16	28
1-9.	11.16	22	1-19	21.4	28
1-10	11.8	22	1-19	25.16	28
1-10	13.16	22	1-20	23.8	28
1-11	11.4	22	1-20	27.16	28
1-11	15.16	22	1-21	21.2	28
1-12	$13-8$	22	1-21	29.16	28
1-12	17.16	22			

Special Circular on Application.
List continued on next page.

BRONZE SHOES

FOR UNIVERSAL BACK RESTS.

Nos. 2 and 14.

Pattern No.	Diameter of Work.	Price each.	Pattern No.	Diameter of Work.	Price cach.
2-5	$5.8{ }^{\prime \prime}$	28 cts .	2-21	$211.16^{\prime \prime}$	50 cts.
2-5	11.16	28	2-22	23.4	
2-6	3.4	28	2-22	213.16	50
2-6	13.16	28	2-23	27.8	50
2-7	7.8	28	2-23	$215-16$	50
2-7	15.16	28	2-24	3	50
2-8	1	28	2-24	81.16	50
2-8	11.16	28	2-25	31.8	72
2-9	11.8	28	2-25	33.16	72
2-9	13.16	28	2-26	31.4	72
2-10	114	28	2-26	35.16	76
2-10	15.16	28	2-27	3 3-8	72
$2-11$	13.8	28	2-27	37-16	72
2-11	17.16	28	2-28	$31-2$	72
$2=12$	11.2	28	2-28	39.16	72
$2-12$	19.16	28	2-29	35.8	72
$2-13$	15.8	28	2-29	311.16	72
$2-13$	111.16	28	2-30	$33-4$	72
$2-14$	13.4	50	$2-30$	318.16	72
2-14	113.16	50	$2-31$	37.8	72
2-15	17.8	50	2-31	$315-16$	72
2-15	115.16	50	2-32	4	72
2-16	2	50	2-32	4.1 .16	72
2-16	21.16	50	2-32	41.8	72
2-17	21.8	50	2-33	41.4	90
2-17	23.16	50	2-34	41.2	90
$2-18$	21.4	50	2-35	43.4	90
2-18	25.16	50	$2-36$	5	90
2-19	23.8	50	$2-37$	51.4	90
2-19	27.16	50	$2-38$	51.2	90
2-20	21.2	50	2-39	5 5-4	90
2-:0	29.16	50	2-40	6	90
2-21	25.8	50			

Special Circular on Application.
In ordering Bronze Shoss, give pattern number and diameter of work to be ground.

For example:
If shoe is wanted for either the Nos. 2 or 14 Universal Back Rests to grind work to $11.16^{\prime \prime}$ in diameter, the order should read: 1 bronze shoe, No. $2-5,11.16^{\prime \prime}$.

DIMENSIONS OF AUTOMATIC GEAR CUTTING MACHINES.

No. of Machine.	3	4	5	6	13
Will cut, Diameter.	26" $\& 36^{\prime \prime}$	$36^{\prime \prime}$ \& 48 $8^{\prime \prime}$	$48^{\prime \prime} \& 60{ }^{\prime \prime}$	B0 ${ }^{\prime \prime}$ \& $72^{\prime \prime}$	$18^{\prime \prime}$
Will cut, Face.	$8^{\prime \prime}$	$9^{\prime \prime}$	$10^{\prime \prime}$	12"	$4{ }^{\prime \prime}$
Willcut, Diametral Pitch:	5	4	3	2	5
Will cut, Circular Pitch	$5.8{ }^{\prime \prime}$	3-4"	1"	$11.2^{\prime \prime}$	$5.8{ }^{\prime \prime}$
No. of Changes of Feed.	3 1-2"	4 1-2"	5'	$7 "$	$3{ }^{\prime \prime}$
Variation of Feed per Revolution of Cutter.	${ }_{\text {. }}^{\text {. }}$.147" ${ }^{\prime \prime}$ to	${ }_{\text {. }}^{.019^{\prime \prime} \text { to }}$.050" to	$.012^{\prime \prime}$ to $.235^{\prime \prime}$
Diameter of Index Wheel.	$19^{\prime \prime}$	$251-2^{\prime \prime}$	34"	43 1.2"	$19^{\prime \prime}$
Diam. of Cutter Arbor.	1"	$11.4^{\prime \prime}$	$11.2 "$	$13.4{ }^{\prime \prime}$	7.87
Diameter of front end of Work Spindle.	3'	$4^{\prime \prime}$	5'	6"	3'
No. of Taper Hole in Work Spindle.	12	14	16	18	12
Speed of Countershaft.	380	306	300	223	350
Floor Space.	$\begin{gathered} 64^{\prime \prime} \mathrm{x} \\ 40^{\prime \prime} \end{gathered}$	$\mathrm{85} \mathrm{\prime} \mathrm{\prime}^{\text {40, }} \mathrm{x}$	${ }_{100}{ }^{\prime \prime} \mathbf{5 6}^{\prime \prime} \mathrm{x}$	${ }_{\text {114' }}{ }^{\text {6/'x }}$	$\begin{gathered} 63^{\prime \prime} \mathrm{x} \\ 43^{\prime \prime} \end{gathered}$
Net Weight, about.	$\begin{aligned} & 2310 \\ & \text { lbs. } \end{aligned}$	$\begin{aligned} & 3850 \\ & 1 \mathrm{bs} . \end{aligned}$	5925 libs.	9400 $1 \mathrm{lbs}$.	$\begin{aligned} & 2650 \\ & \text { lbs. } \end{aligned}$
Price.					
Price, with Pump.					

No. 3

26 in. $\times 8$ in: and 36 in. x 8 in.
 AUTOMATIC GEAR CUTTING MACHINES.

- Patented March 13, 19Ko.

This machine cuts spur gears to $26^{\prime \prime}$ in diameter, $8^{\prime \prime}$ face and 5 diametral pitch.

It is also made to cut spur gears to $36^{\prime \prime}$ in diameter, $8^{\prime \prime}$ face and 5 diametral pitch.

No. 3

26 in. $\times 8$ in. and 36 in. $\times 8$ in. aUTOMATIC GEAR CUTTIING MACHINES.

The Cutter Spindle has 8 changes of speed, varying from 28 to 168 revolutions per minute. An outer hearing on the cutter slide gives additional support to the cutter arbor.

The Cutter Arbor furnished is 1 " in diameter.
12 Changes of feed of cutter, evenly graded from $.015{ }^{\prime \prime}$ to $.147^{\prime \prime}$ per revolution, can be obtained by means of change gears. The return of cutter shde is rapid.

The Head, which carries the work spindle, is adjusted ly means of a screw operated by a hand wheel. A dial graduated to read to thousandths of an inch indicates this adjustment. The work spindle has a No. 12 taper hole.
The Overhanging arm clears geirs to $12^{\prime \prime}$ in diameter.
An Outer Support for end of work arhor is furnished and takes all work to full capacity of machine. It has a hole for outer bearing as well as an adjustable centre.

The Indexing Mechanism is independent of the feed and speed of cutter, so that the indexing is as rapid when these are slow as when they are fast. It operates without shock.

The Index Change Gears provide for cutting all numbers of teeth from 12 to 50 , and all numbers from 50 to 400 , ex. cepting the prime numbers and their multiples.

Tables giving cutter speeds, the changes for gears to use for cutting the various numbers of teeth and the changes for feed gears to obtain the proper feed for the cutter slide, are sent with each machine.
The Counter-shaft has tight and loose pulleys, $10^{\prime \prime}$ in diameter for 31.2 " belt and should run about 260 revolutions per minute.

Weight of machine ready for shipment, ahout 3100 lbs .
Net Weight, about 2400 lhs. Floor Space, $64^{\prime \prime} \times 40^{\prime \prime}$.

Price includes indicator for setting cutter, change gears, outer support for work arbor, wrenches etc., together with overhead works, boxed and delivered f.o.b. it Providence, R. I.

Price, $\$ \quad$ Price, mạchine with pump, $\$$
This Machine is also made to cut SPUR GEARS to $\mathbf{3 6}^{6 "}$ diameter, $8^{\prime \prime}$ face and 5 diametral pitch.

Weight of machine ready for shipment, about 3190 lbs.
Net Weight, about 2485 lbs. Floor Space, $64^{\prime \prime} \times 40^{\prime \prime}$.
Dimensions of box for shipment, $65^{\prime \prime} \times 355^{\prime \prime} \times 66^{\prime \prime}$.
Price, $\$$ Price, machine with pump, $\$$
For Arbors, Bushings, Collets, sets of same and Attachments, see pages 134 to 138 .

For Cutters to use with this machine, see pages 266 and 273.

No. 4

$36 \mathrm{in} . \times 9 \mathrm{in}$. and $48 \mathrm{in}. \times 9 \mathrm{in}$.
AUTOMATIC GEAR CUTTING
MACHINES.
Patented March 13, 180)

This machine cuts spur gears to $36^{\prime \prime}$ in diameter, $9^{\prime \prime}$ face and 4 diametral pitch.

It is also made to cut spur gears to $48^{\prime \prime}$ in diameter, $9^{\prime \prime}$ face and 4 diametral pitch.

No. 4

36 in. $\times 9$ in. and 48 in. $\times 9$ in. AUTOMATIC GEAR CUTTING

MACHINES.

The Cutter Spindle has 6 changes of speed, varying from 20 to 106 revolutions per minute. An outer bearing on the cutter slide gives additional support to the cutter arbor.

The Cutter Arbor furnished is 1 1-4" in diameter. It ran be removed and other smaller sizes substituted. Other sizes carried in stock.

12 Changes of feed of cutter, evenly graded from $.019^{*}$ to $.263^{\prime \prime}$ per revolution, can be obtained by means of change gears. The return of cutter slide is rapid.
The Head, which carries the work spindle, is adjusted by means of a screw operated by a hand wheel. A dial graduated to read to thousandths of an inch indicates this adjustment. The work spindle has a No. 14 taper hole.
An Outer Support for end of work arbor is furnished and takes all work to full capacity of machine. It has a hole for outer bearings as well asan adjustable centre.
The Indexing Mechanism is independent of the feed and speed of cutter, so that the indexing is as rapid when these are slow as when they are fast. It operates without shock.

The Index Change Gears provide for cutting all numbers of teeth from 12 to 50 and all numbers from 50 to 400 , excepting the prime numbers and their multiples.

Tables giving cutter speeds, the changes for gears to use for cutting the various numbers of teeth and the changes for feed gears to obtain the proper feed for the cutter slide, are sent with each machine.

The Counter-shaft has tight and loose pulleys, $14^{\prime \prime}$ in diam. eter for $41-2^{\prime \prime}$ belt and should run about 250 revolutions per minute.

Weight of machine ready for shipment, about 4790 lbs .
Net Weight, about 3820 lbs. Floor Space, $85^{\prime \prime} \times 40^{\prime \prime}$.
Dimensions of box for shipment, $77^{\prime} \times 44^{\prime \prime} \times 71^{\prime \prime}$.
Price includes indicator for setting cutter, change gears,
2 1-2" expansion busbing, wrenches etc., together with overhead works, boxed and delivered f. o.b.at Providence, R. I.
Price, \$
Price, machine with pump,\$
This Machine is also made to cut SPUR GEARS to $\mathbf{4 8}^{\prime \prime}$ diameter, $9^{\prime \prime}$ face, and 4 diametral pitch.
Weight of machine ready for shfpment, about 4800 lbs .
Net Weight, about 3925 Ibs.
F100r Space, 85" x $40^{\prime \prime}$.
Dimensions of box for shipment, $77^{\prime \prime} \times 44^{\prime \prime} \times 78^{\prime \prime}$.
Price,
Price, machine with pump, 8
For Arloors, Bushings, Collets, sets of same, and Attachments, see pages 134 to 138.
For Cutters to use with this machine, see pages 266 and 273. .

No. 5
$48 \mathrm{in}. \times 10 \mathrm{in}$. and $60 \mathrm{in}. \times 10 \mathrm{in}$.
AUTOMÅTIC GEAR CUTTING MACHINES.

1'atented July 13, 1897 : March 13, 1900.

This machine cuts spur gears to $48^{\prime \prime}$ in diameter, $10^{\prime \prime}$ face and 3 diametral pitch.

It is also made to cut spur gears to $60^{\prime \prime}$ in diameter, $10^{\prime \prime}$ face and 3 diametral pitch.

No. 5

48 in. $\times 10$ in. and 60 in. $\times 10$ in. AUTOMATIC GEAR CUTTING MACHINES.

The Cutter Spindle has 6 changes of speed, varying from 20 to 80 revolutions per minute. An outer bearing on the cutter slide gives additional support to the cutter arbor.
The Cutter Arbor furnished is $11-2$ in diameter. It can be removed and other smaller sizes substituted Other sizes carried in stock.

15 Changes of feed of cutter, evenly graded from .037" to . $620^{\prime \prime}$ per revolution, can be obtained by means of change gears. The return of cutler is rapid.
The Head, which carries the work spindle, is adjusted by means of a screw operated by a crank. A dial, graduated to read to thousandths of an inch, indicates this adjustment. The work spindle has a No. 16 taper hole. Provision is made for raising and lowering the head by power.
An Outer Support for end of work arbor is placed on the machine, and takes all work to full capacity of machine.

The Indexing Mechanism is independent of the feed and speed of cutter so that the indexing is as rapid when these are slow as when they are fast. It operates without shock.

The Index Change Gears provide for cutting all numbers of teeth from 12 to 50 , and all numbers from 50 to 400 , ex. cepting the prime numbers and their multiples.
A Withdrawing Expansion Arbor is furnished with the machine and allows the work to be placed in position and removed without disturbing the adjustments.

Tables giving cutter speeds, the changes for gears to use for cutting the various numbers of teeth and the changes for feed gears to obtain the proper feed for the cutter slide, are sent with each machine.

The Counter-8haft has tight and loose pulleys, 18 "in diam. eter for $5^{\prime \prime}$ belt, and should run about 300 revolutions per minute.

Weight of machine ready for shipment, about 7075 lbs .
Net Weight, about 5905 lbs . Floor Space, $100^{\prime \prime} \times 56^{\prime \prime}$.
Dimensions of box for shipment, $87^{\prime \prime} \times 51^{\prime \prime} \times 80^{\prime \prime}$.
Price includes indicator for setting cutter, change gears, $3^{\prime \prime}$ e expansion bushing, wrenches, ete., together with over. head works, boxed and delivered f. o b , at Providence. R. I

Price, $\$ \quad$ Price, machine with pump, $\$$
This Machine is also made to cut SPUR GEARS to 60 " diameter, $10^{\prime \prime}$ face, and 3 diametral pitch.
Weight of machine ready for shipment, about 7275 lbs .
Net Weight, about 6080 lbs. Floor Space, $100^{\prime \prime} \times 56^{\prime \prime}$.
Dimensions of box for shipment, $87^{\prime \prime} \times 51^{\prime \prime} \times 86^{\prime \prime}$.
Price. $\$$ Price, machine with pump, $\$$
For Arbors, Bushings, Collets, sets of same, and Internal Gear Cutting Attachment, see pages 134 to 137.
For Cutters to use with this machine, see pages 266 and 274.

No. 6
$60 \mathrm{in} . \times 12 \mathrm{in}$. and $72 \mathrm{in} . \times 12 \mathrm{in}$.

aUTOMATIC GEAR CUTTING MACHINES.
 Patented July 13, 1897 ; March 18, 1900.

This machine cuts spur gears to $60^{\prime \prime}$ in diameter, $12^{\prime \prime}$ face and 2 diametral pitch.

It is also made to cut spur gears to $7 \mathbf{7 2}^{\prime \prime}$ in diameter, $12^{\prime \prime}$ face and 2 diametral pitch.

No. 6

$60 \mathrm{in} . \times 12 \mathrm{in}$ and $72 \mathrm{in} . \times 12 \mathrm{in}$.
AUTOMATIC GEAR CUTTING' MACHINES.
The Cutter Spindle has 6 changes of speed, varying from: 12 to 50 revolutions per minute. An outer bearing on the cutter slide gives additional support to the cutter arbor.

The Cutter Arbor furnished is $18.4^{\prime \prime}$ in diameter. It can. be removed and other smaller sizes substituted. Other sizes. carried in stock.
12 Changes of feed of cutter, evenly graded from . 050° to .373" per revolution, can be obtained hy means of change gears. The return of cutter slide is rapid.
The Head, which carries the work spindle, is adjusted by means of a screw operated by a crank. A dial, graduated to read to thousandths of an inch, indicates this adjustment. The work spindle has a No. 18 taper hole. Provision is: made for raising and lowering the head by power.
An Outer Support for end of work arior is furnished and takes all work to full capacity of machine. It has a hole for outer bearing as well as an idjustable centre.

The Indexing Mechanism is independent of the feed and speed of cutter, so that the indexing is as rapid when these are slow as when they are fast. It operates without shock.

The Index Change Gears provide for cutting all numbers of teeth trom 12 to 50 and all numbers from 50 to 400 , excepting the prime numbers and their multiples.
A. Withdrawing Expansion Arbor is furnished with the machine and allows the work to be placed in position and removed without disturbing the adjustments.

Tables giving cutter speeds, the changes for gears to use for cutting the various numbers of teeth and the changes. for feed gears to obtain the proper feed for the cutter slide, are sent with each machine.

The Counter-shaft has tight and loose pulleys, 24 " in diameter for $\boldsymbol{7}^{\prime}$ belt.and should run about 223 revolutions per minute.
Weight of machine ready for shipment, about 11420 lbs.
Net Weight, about 9400 lbs. Floor Space, $114^{\prime \prime} \times 66^{\prime \prime}$.
Dimensions of box for shipment, $100^{\prime \prime} \times 64^{\prime \prime} \times 93^{\prime \prime}$.
Price includes indicator for setting cutter, change gears, $4^{\prime \prime}$ expansion bushing, wrenches etc., together with overhead works, boxed and delivered f. o.b. at Providence, R. I.
Price, $\$ \quad$ Price, machine with pump, $\$$
This Machine is also made to cut SPUR GEARS to $7^{\prime \prime}$ diameter, $\mathbf{1 2 \prime \prime}$ face and 2 diametral pitch.
Weight of machine ready for shipment, about 11450 lbs .
Net Weight, about 9650 lbs . Floor Space, $114^{\prime \prime} \times 66^{\prime \prime}$.
Dimensions of box for shipment, $100{ }^{\prime \prime} \mathrm{x} 64$ "x $99^{\prime \prime}$.
Price, $\$$ Price, machine with pump, $\$$
For Arbors, Bushings, Collets, sets of same, and Internal. Gear Cutting Attachment, see pages 134 to 137.
For Cutters to use with this machine, see pages 267 and 274.

No. 13
 18 in. $\times 4$ in.
 AUTOMATIC GEAR CUTTING MACHINE.

This machine cuts spur and bevel gears to $18^{\prime \prime}$. in diameter, $4^{\prime \prime}$ face and 5 diametral pitch.

No. 13 18 in .14 in.
 aUTOMATIC GEAR CUTTIING MACHINE

For Spur and Bevel Gears.

Patented Feb. 6, Mar. 13, 1800.

The Cutter Spindle, $7-8^{\prime \prime}$ diameter, has 10 changes of speed, obtained by means of change gears, evenly graded from 80 to 168 revolutions per minute. An outer bearing on the cutter slide gives additional support to the cutter spindle. Bushings furnished to take cutters with $11-4^{\prime \prime}$ hole.

The Cutter Slide is aujustable to any angle to 90 degrees. A graduated are indicates the angle of elevation. The cutter can be set either side of the centre when cutting bevel gears. A vernier graduated to read to thousandths of an inch indicates the adjustment.
${ }^{16}$. Changes of feed of cutter, evenly graded from .012" to .235" per revolution of spindle, can be oftained by means of change gears. The return of cutter is rapid.

The Head, which carries the work spindle, is adjusted by means of a screw operated by a hand wheel. The thrust of the elevating screw is taken by ball bearings. A dial, graduated to read to thousandths of aninch, indicates the adjustment.
The work spindle has a No. 12 taper hole, 11.2' diameter at small end.
The Overhanging Arm clears gears to $1 z^{\prime \prime}$ in diameter. Larger gears are supported by a rest placed back of the rim of gear, opposite cutter.
The Indexing Mechanism is independent of the feed and speed of cutter; so that the indexing is as rapid when these are slow as when they are fast. It operates without shock.
The Index Change Gears provide for cutting all numbers of teeth from 12 to 50 , and all numbers from 50 to 400 , except. the prime numbers and their multiples.
Tables giving cutter speeds, the changes for gears to use for cutting the various numbers of teeth and the changes for feed gears to obtain the proper feed for the cutter slide ${ }_{\text {. }}$ are sent with each machine.
The Counter-8haft has tight and loose pulleys 10° in diam. eter for 3' belt, and should run about 350 revolutions per minute.
Weight of machine ready for shipment, about 3350 lbs .
Net Weight, about 2675 lbs.
Floor Space, $63^{\prime \prime} \times 43^{\prime \prime}$.
Dimensions of box in which machine is shipped, $67^{\prime \prime} \times 39^{\prime \prime}$ $\times 64^{\prime \prime}$.
Price, \$ Price, machine with pump, \$
For Arbors, Bushings, Collets and sets of same, see pages 134 to 136.

EXPANSION BUSHINGS FOR WORK ARBORS.

Automatic Gear Cutting Machines.

Outside Diameter	Machine where used.	Length.	Number of Taper Hole.	Used with Arbor.	Price.
3-4"	Nos. 3 and 13	\} $3^{\prime \prime}$	6	I	\$100
7.8	${ }^{4}$	"	"	"	100
1	"	"	6	"	100
11.8	"	"	"	"	100
11.4	"	31.2	9	J	130
13.8	"	،	،	"	155
11.2	6	*	6	6	155
? 15.8	"	،	*	*	190
13.4	"	"	I1	K	190
2	"	"	،	"	220
21.4	*	"	6	"	220
1	No. 4	31.2	7	M	105
11.8	6	،	6	*	105
11.4	"	"	6	"	130
13.8	"	"	6	"	155
11.2	"	5	10	N	155
15.8	"	"	،	،	190
13.4	"	"	"	6	190
2	"	"	"	"	220
*2	،	"	12	O	220
*2 1.4	"	"	،	*	220
+*2 1.2	"	"	"	6	265
*23.4	"	"	"	*	310
*3	"	"	*	"	350
11.2	No. 5	41.2	10	Q	155
15.8	6	"	"		190
13.4	'6	"	"	6	190
2	6	"	\%	،	220
21.4	،	*	6	6	220
*2 1.2	6	6	13	R	265
*23.4	"	"	'6	"	310
†*3	،	6	"	"	350
*3 1-4	"	"	"	"	350
31.4	*	"	14	S	350
*3 1.2	"	،	13	R	360
$31-2$	"	"	14	S	360
21.4	No. 6	6	12	${ }_{6}$	220
21.2	6	،	"	\%	265
23 -4	6	"	،	6	310

In ordering, state outside diameter, and letter of Arhor.
Bushings marked * can be used on Withdrawing Work Arbors turnished.
Bushings marked \dagger are furnished with the machine.

EXPANSION BUSHINGS FOR WORK ARBORS-Continued.

Outuide Diameter.	Machine where used.	Length.	Number of Taper Hole.	Used wit Arbor.	Price.
*3'	No. 6	71.2 '	14	V	$\$ 365$
* 1.4	4	-	${ }^{6}$	"	380
* 31.2	"	"	${ }^{6}$	*	400
*3 34	'6	"	4	*	415
†*4	"	*	"	*	430
4	"	9	18	W	450
41.2	"	"	${ }^{6}$	"	500
5	"	6	${ }^{6}$	'6	550

In ordering, state outside diameter, and letter of Arloor.
Bushings marked * can be used on Withdrawing Work Arbors.
Bushing marked \dagger is furnished with the machine.
WORK ARBORS. AUTOMATIC GEAR CUTTING MACHINES.

Mark.	Nachine where used.	No. of Taper of Shank.	Length of Bushiug.	No. of Taper for Bushing.	Bnualiest Possible Bushing	Prico.
*I	Nos. 3 and 13	10	3"	6	3.4"	\$ 900
J		12	31.2	9	11.4	1400
K	،	12	31.2	11	13.4	1400
*M	No. 4	11	31.2	7		1000
N		14	5	10	11.2	1600
0	"	14	5	12	2	1600
* ${ }^{\text {O}}$	No. 5	12	41.2	10	11.2	1400
		16	6	13	21.2	2000
S	"	16	6	14	31.4	2000
* ${ }^{\text {V }}$	No. 6	14		12	21.4	1800
v	،	18	71.2	14	3	2200
W	"	18	9	18		2400

Arbors marked * are for use in the Collets.

COLLETS FOR WORK SPINDLE.
 adtomatic gear cutting machines.

Mark.	Machiue where used.	Outside Taper.	Inside Taper.	Price.
V	Nos. 3 and 13	No. 12	No. 10	\$650
V V	Nos. 3 and 13	" 12	" 11	650
W	No. 4	" 14	" 11	800
WW	" 4	" 14	" 10	800
X	* 5	" 16	" 12	1000
$\mathbf{X X}$	(6) 5	" 16	- 11	1000
\mathbf{Y}	" 6	" 18	" 14	1300
YY	" 6	" 18	" 11	1150

These Collets are provided with Threaded Holes for drawing in bolt.

TOOLS FOR USE ON AUTOMATIC gear CUTTING MACHINES.

The tools in the following lists we have found to be among those flrst needed in using these machines.

At the prices stated they can be sold only in full sets.
They are shipped with each machine and, if not wanted, are to be carefully re-packed and returned by express, at our expense.

FOR

Nos. 3 \& 13 Automatic Gear Cutting Machines.

V Collet and No. 10 Key . One each $1, \mathrm{~J}$ and K Arbors. Eleven Bushings, as follows:

For I Arbor, $3-4^{\prime \prime} \times 33^{\prime \prime}, 7-\AA^{\prime \prime} \times 3^{\prime \prime}, 1^{\prime \prime} \times 3^{\prime \prime}, 11.8^{\prime \prime} \times 3^{\prime \prime}$.
For J Arbor, 1 1-4" x 3 1-2", $13.8^{\prime \prime}$ x 3 1.2", $11-2^{\prime \prime} \times 31-2^{\prime \prime}$, $15 \cdot \mathrm{~K}^{\prime \prime} \mathrm{x} 31 \cdot 2^{\prime \prime}$.
For K Arbor, 1 3-4" x 3 1-2", $\mathbf{2}^{\prime \prime}$ x 3 1-2", 2 1-4" x 3 1-2". Price, $\$ 4000$.

For No. 4 Automatic Gear Cutting Machines.

W Collet and No. 11 Key. One each M, N and O Arbors.
Eleven Bushings, as follows:
For M Arthor, $1^{\prime \prime} \times 31-2^{\prime \prime}, 11-8^{\prime \prime} \times 31-2^{\prime \prime}, 11-4^{\prime \prime} \times 31.2^{\prime \prime}$, $13-8^{\prime \prime} \times 31 \cdot 2^{\prime \prime}$.
For N Arbor, $11-2^{\prime \prime} \times 5^{\prime \prime}, 15-8^{\prime \prime} \times 5^{\prime \prime}, 13-4^{\prime \prime} \times 5^{\prime \prime}, 2^{\prime \prime} \times 5^{\prime \prime}$.
For O Arbor, $21-4^{\prime \prime} \times 5^{\prime \prime}, 23.4^{\prime \prime} \times 5^{\prime \prime}, 3^{\prime \prime} \times 5^{\prime \prime}$.
Price, $\$ 4800$.
One Bushing, - $21-2^{\prime \prime} \times 5^{\prime \prime}$, furnished with machine.

For No. 5 Automatic Gear Cutting Machines.

X Collet and No. 12 Key. One each Q, R and S Arbors.
Nine Bushings, as follows:
For (Q Arior, $11.2^{\prime \prime} \times 41-2^{\prime \prime}, 15-8^{\prime \prime} \times 41 \cdot 2^{\prime \prime}, 13.4^{\prime \prime} \times 41 \cdot 2^{\prime \prime}$, $2^{\prime \prime} \times 41 \cdot 2^{\prime \prime}, 2^{1} 4^{\prime \prime} \times 4$ 1-2".
For 12 Arbor, $21-2^{\prime \prime} \times 6^{\prime \prime}, 234^{\prime \prime} \times 6^{\prime \prime}$.
For SArbor, 3 1-4" $\times 6^{\prime \prime}, 3$ 1-2" $\times 6^{\prime \prime}$.
Price, $\$ 5^{8} 0$.
One lushing, $-3^{\prime \prime} \times 6^{\prime \prime}$, furnished with machine.

For No. 6 Automatic Gear Cutting Machines.

Y Collet and No. 14 Key. One each U, V and W Arbors. Nine Bushings, as follows:
For U Arbor, 2 1-4" x $6^{\prime \prime}, 21.2^{\prime \prime} \times 6^{\prime \prime}, 23.4^{\prime \prime} \times 6^{\prime \prime}$.
For V Arbor, $3^{\prime \prime} \times 7$ 1-2", 3 1.4" $\times 7$ 1-2", 3 1-2" x 7 1-2", 3 3.4" x 7 1-2".
For W Arbor, 4 1-2" $\times 9^{\prime \prime}, 5^{\prime \prime} \times 9^{\prime \prime}$.

$$
\text { Price, } \$ 75 \infty .
$$

One Bushing, $-4^{\prime \prime} \times 71 \cdots{ }^{\prime \prime}$, furnished with machine.

[^1]
INTERNAL GEAR CUTTING ATTACHMENTS

FOR

Nos. 3, 4, 5 and 6 Automatic Gear Cutting Machines.

The Holder or Frame is secured to the cutter slide and the cutter spindle of the Attachment is dri sen by the main cutter spindle of the machine through a train of gears.

All cylindrical bearings are hardened and groumd.
Diameter of Cutters for No. 3, $23-4^{\prime \prime}$; No. 4, 3 1.4"; No. 5, 4 1-4"; No. 6, 4 3-4".
Diameter of Arbors furnished: No. 3, $1^{\prime \prime}$; No. 4, $1^{\prime \prime}$ and 1 1-4"; No. 5, $11-4^{\prime \prime}$ and $11-2^{\prime \prime}$; No. 6, $11-2^{\prime \prime}$ and $13-4^{\prime \prime}$.

A convenient method of holding the work is shown in cut.
Weights for Shipment: No. 3, about 40 lls.; No. 4, about 83 lbs.; No. 5, about 145 liss.; No. 6, aloout $180 \mathrm{ll}, \mathrm{s}$.

- Dimensions of boxes in which Attachments are shipped: No. 3, $20^{\prime \prime} \times 9^{\prime \prime} \times 9^{\prime \prime}$; No. 4, $\underline{2}^{\prime \prime} \times 11^{\prime \prime} \times 10^{\prime \prime} ;$ No. $\overline{5}, \underline{2 \prime \prime} \times 13^{\prime \prime} \times 12^{\prime \prime}$; No. $6,30^{\prime \prime} \times 14^{\prime \prime} \times 12^{\prime \prime}$.

No.	Machines where used.	Widest Face that can be cut.	Smallest Inside Diam. of Gear that can be cut.	Coarsest Pitch that can be cut.	Price.
8	No. 3	$21.8^{\prime \prime}$	3 1-4"	9	\$
4	No. 4	31.2	41.4	6	\$
5	No. 5	41.4	51.4	4	\$
6	No. 6	33.4	61.2	3	\$

QUILL GEAR CUTTIING ATTACHMENTS

FOR

Nos. 3 and 4 Automatic Gear Cutting Machines.

These attachments are for cutting the small members of quill gears, as shown in cut, or other gears of similar construction.

They are easily and quickly placed in position or removed.

The cutter spindle is raised above the cutter spindle of the machine and driven by a train of gears.

Net Weights : No. 3, 25 lbs.; No. 4, 40 lbs.

No.	Machine where used.	Coarseat Pitch that can be cut.	Diameter of Cutter.	Greatest Difference in Diameter Large nad Small Gear.	Prioe.
	3	6	3'	$9^{\prime \prime}$	\%
4	4	4	3 3-4	131.2	¢

TABLE OF CUTTING SPEEDS.

FEET PEA	15^{\prime}	20	25	30^{\prime}	35^{\prime}	40^{\prime}	45^{\prime}	50^{\prime}	60^{\prime}	70^{\prime}	80^{\prime}
DIAM.	REVOLUTIONS PER MINUTE,										
$1 / 10$	917.	1223.	I528.	I834.	2140.	2445.	2751.	3057.	3668.	4280.	4891.
16	459.	6I1.	764.	917.	I070.	1222.	1375.	1528.	1834.	2139.	2445
$3 / 16$	306.	408.	509.	611.	713.	815.	917.	IOI9.	1222.	1426.	1630
$1 / 4$	229.	306.	382.	458.	535.	611.	688.	764.	917.	1070.	1222.
5/16	183.	245.	306.	367.	428.	489.	550.	611.	733.	856.	978.
3/8	153.	204.	255.	306.	357.	408.	458.	509.	611.	713.	815.
7/16	I3I.	175.	218.	262.	306.	349.	393.	437.	524.	611.	699.
3/2	II5.	153.	I9I.	229.	268.	306.	344.	382.	459.	535.	611.
5	91.8	123.	153.	184.	214.	245.	276.	306.	367.	428.	489.
9	76.3	102.	127.	153.	178.	203.	229.	254.	306.	357.	408.
\%/8	65.5	87.3	109.	131.	I53.	175.	196.	219.	262.	306.	349.
I	57.3	76.4	95.5	115.	134.	153.	172.	191.	229.	267.	306.
11/8	5 I .0	68.0	85.0	IO2.	119.	136.	153.	170.	204.	238.	272.
114	45.8	6 I .2	76.3	91.8	107.	123.	137.	153.	183.	214.	245.
I\%/8	41.7	5.5 .6	69.5	83.3	97.2	111.	125.	139.	167.	195.	222.
I $1 / 2$	38.2	50.8	63.7	76.3	89.2	102.	115.	127.	153.	178.	204.
15\%	35.0	47.0	58.8	70.5	82.2	9	106.	117	141.	165.	188
18	32.7	43.6	54.5	65.5	76.4	87.3	98.2	109.	131.	153.	175.
$17 / 8$	30.6	40.7	50.9	6I.I	71.3	81.5	91.9	102.	122.	143.	163.
2	28.7	38.2	47.8	57.3	66.9	76.4	86.0	95	115.	134.	153.
$21 / 4$	25.4	34.0	42.4	51.0	59.4	68.0	76.2	85.0	102.	119.	136.
21/2	22	30.6	38.2	45.8	53.5	61.2	68.8	76.3	91.7	107.	122.
2\%	20.8	27.8	34	41.7	48.6	55.6	62.5	69.5	83.4	. 2	III.
3	19. 1	25.5	31.	38.2	44.6	51	57	63.7	76.4	89.1	102.
31/2	16.4	21.8	27.3	32.7	38.2	43.6	49.1	54.5	65.5	76.4	87.4
4	I4.3	19.1	23.9	28.7	33.4	38.2	43.0	47.8	57.3	66.9	
412	12.7	16.9	2 I .	25	29.6	34.	38.2	42.4	51.0	59.4	67.9
5	II. 5	15.3	19	22.9	26.7	30.6	34.4	38.2	45.9	53.5	61.1
51/2	10.4	13.9	17	20.8	24	27.8	31.3	34.7	41.7	8.6	5.6
6	9.6	12.7	15.9	19	22.3	25.5	28.7	31.8	38.2	44.6	51.0
7	8.1	10.9	13.6	16.4	19.1	21.8	24.6	27.3	32.7	38.2	43.7
8	7.2	9.6	II. 9	14.	16.7	19.1	21.	23.9	28.7	33.4	38.2
9	6.4	8.5	10.6	12.7	14	17.0	19.	21.2	25.5	29.7	4.0
10	$5 \cdot 7$	7.6	9.6	11.5	13.4	15.3	17.2	19.1	22.9	26.7	30.
II	5.2	6.9	8.7	10.4	12.2	13.9	15.6	17.4	20.8	24.3	27.8
12	4.8	6.4	8.0	9.6	11.1	12.7	14.3	15.9	19.1	22.3	25.5
13	4.4	5.9	$7 \cdot 3$	8.8	10.3	11.8	13.2	14.7	17.6	20.6	23.5
I4	4.1	$5 \cdot 5$	6.8	8.	9.6	10.9	12.3	13.6	16.4	17.1	21.8
15	3.8	5.1	6.4	7.6	8.9	10.2	11.5	12.7	15.3		20.4
16	3.6	4.8	6.0	7.2	8.40	9.6	10.7	II.9	14.3	16.71	19.1

$21-32 \mathrm{in} \times 31-.2 \mathrm{in}$. PLAIN SCREW MACHINE.

This machine has a hole $21-32^{\prime \prime}$ in diameter through spindle and turns any length to $31-2^{\prime \prime}$. Greatest distance bet ween turret and front of chuck, $8^{\prime \prime}$.

No. 3
 21-32 in. $x 3$ 1-2 in.

PLAIN SCREW MACHINE.

The Spindle is of steel; the bearings are hardened, ground and lapped and run in phosphor bronze boxes. The front box is provided with means of compensation for wear. The thrust is taken at rear end of spindle; the bearing parts are of steel and phosphor bronze.

The Hole through spindle is 21-32" in diameter.
Δ Chasing Bar, provided with a 16 pitch leader and nut, is furnished with this machine.

The Cone has 3 steps for $2^{\prime \prime}$ belt.
The Turret has 6 holes $13-16^{\prime \prime}$ in diameter; distance from centre of holes to top of slide, 119-32"; greatest distance attainable between turret and front of chuck, $8^{\prime \prime}$.

8wing over bed, $93-8^{\prime \prime}$; over cross slide, 3 1-2"; with chasing bar in position, $3^{\prime \prime}$; length that can be turned, 3 1-2".
The Tank Table has a reservoir cast in the bottom, providing for the collection of the strained oll.

The Counter-shaft has 2 friction pulleys, $10^{\circ \prime}$ in diameter for $3^{\prime \prime}$ belts, and should run about $\mathbf{2 7 0}$ revolutions per minute.

Weight of machine ready for domestic shipment, about 710 lbs.

Weight of machine ready for foreign shipment, about 950 lbs.

Fet Weight, about 650 lbs.
Floor Space, $30^{\prime \prime} \times 50^{\prime \prime}$.
Dimensions of boxes in which machine is shipped, $45^{\prime \prime} \mathrm{x}$ $16^{\prime \prime} \times 23^{\prime \prime}$, and $55^{\prime \prime} \times 26^{\prime \prime} \times 19^{\prime \prime}$.

Price includes oll can, chuck, wrenches, and everythitas else shown in cut, together with overhead works, boxed and delivered f. o. b. at Providence, R. I.

Price, 8
An Oil Pump, Pipes, etc., are furnished when deatreal
Price,
For Tools and Attachments, see pages 172 to 18s.

No. 4

$19-32 \mathrm{in} . \times 6 \mathrm{in}$.
 ,
 PLAIN SCREW MACHINE.

This machine has a hole $19-32^{\prime \prime}$ in diameter through spindle and turns any length to $6^{\prime \prime}$.

Greatest distance between turret and front of chuck, $18^{\prime \prime}$.

No. $4 \quad 19-32$ in. x in. PLAIN SCREW MACHINE.

The Spindle is of steel ; the bearings are hardened, ground
and lapped and run in phosphor bronze boxes. The front box is provided with means of compensation for wear. The thrust is taken at rear end of spindle; the bearing parts are of hardened steel and phosphor bronze.
The Hole through spindle is $1 \mathrm{y}-32^{\prime \prime}$ in diameter.
The Cone has 3 steps for 3 "' belt.
The Turret has 7 holes $11-2^{\prime \prime}$ in diameter; distance from centre of holes to top of slide, $23.4^{\prime \prime}$; greatest distance between turret and front of chuck, $18^{\prime \prime}$.

8wing over bed, 13 3-8"; over cross slide, $5^{\prime \prime}$; length that can be turned, $6^{\prime \prime}$.

The Tank Table has a reservoir cast in the bottom, providing for the collection of strained oil.

The Counter-shaft has 2 friction pulleys 14" In diameter for $31.2^{\prime \prime}$ belts, and should run about 190 revolutions per minute

Weight of machine ready for domestic shipment, about 1490 lbs.

Weight of machine ready for foreign shipment, about 1650 lbs.

Net.Weight, about 1275 lbs. Floor Space, 27"x 62".
Dimensions of boxes in which machine is shipped, 62" x $20^{\prime \prime} \times 28^{\prime \prime}$, and $65^{\prime \prime} \times 25^{\prime \prime} \times 23^{\prime \prime}$.

Price includes oil can, chuck, wrenches, and everything else shown in cut, together with overhead works, boxed and delirered f. o.b. at Providence, R. I.
Price, ${ }^{\$}$
An Oil Pump, Pipes, etc., are furnished when desired. Price, $\$$
For Tools and Attachments, see pages 172 to 183.

No. 5 1 9-32 in. x 6 in. PLAIN SCREW MACHINE.

This machine is the same as the No. 4 Screw Machine, ex. cept that a chasing bar with a 12 -pitch leader and nut is added.
Swing over cross slide with chasing bar in position, 3 3-4".
Weight of machine ready for domestic shipment, about 1525 lbs.
Weight of machine ready for foreign shipment, about 1820 lbs.

Net Weight, about 1400 lbs. Floor Space, 27"x 68".
Dimensions of boxes in which machine is shipped, 67"x $23^{\prime \prime} \times 82^{\prime \prime}$, and $65^{\prime \prime} \times 25^{\prime \prime} \times 23^{\prime \prime}$.

Price, ${ }^{8}$
An Oil Pump, Pipes, etc., are furnished when desired. Price, 8
For Tools and Attachments, see pages 172 to 183.

144

No. 6
 19-16 in. x 8 in.
 PLAIN SCREW MACHINE.
 Back Geared.

Patented Oct. 15, 18 9; May 23, 1893 ; July 24, 1894; Jan. 6, 1903.

This machine has a hole $19-16^{\prime \prime}$ in diameter through spindle and turns any length to $8^{\prime \prime}$.

Greatest distance between turret and front of 'huck, 19".

No. 6 $19-16 \mathrm{in} \times$.8 in. PLAIN SCREW MACHINE.

Back Geared.

The Spindle is of steel; the bearings are hardened, ground and lapped and run in phosphor bronze boxes. The front box is provided with means of compensation for wear. The thrust is taken at rear end of spindle; the bearing parts are of hardened steel and phosphor bronze.
The Hole through spindle is $19-16^{\prime \prime}$ in diameter.
The Cone has 3 steps for $3^{\prime \prime}$ belt and is back geared. The back gears are under spindle, and, together with the gears on cone, are enclosed. These gears run continuously and are engaged or disengaged by a clutch, operated by a lever on the front of the machine.
The Turret has 7 holes $11-2^{\prime \prime}$ in diameter and can be clamped in position. Distance from centre of holes to top of slide, $23-4^{\prime \prime}$; to top of feed case, $21.2^{\prime \prime}$; greatest distance between turret and face of chuck, $19^{\prime \prime}$.

The Feed of turret slide is automatic and has 8 changes, varying from . $005^{\prime \prime}$ to. $030^{\prime \prime}$ to one revolution of spindle. The feed cones have 4 steps and, by the movement of a lever, each of the four speeds of cones can be made fast or slow without changing the belt.

Independent Stops, which are easy of access and automatic with the turret, are provided for each hole in the turret.
Swing over bed, 13 3-8"; over cross slide, $57-8^{\prime \prime}$. Length that can be turned, $8^{\prime \prime}$.

The Tank Table has a reservoir cast in the bottom, pro. viding for the collection of strained oil.

The Counter-shaft has 2 friction pulleys 14" in diameter for $31-2^{\prime \prime}$ belts and should run about 175 revolutions per minute.

Weight of machine ready for domestic shipment, about 2200 lbs.

Weight of machine ready for foreign shipment, about 23.5 lbs.

Net Weight, about 1800 lbs.
Floor Space, $30^{\prime \prime} \times 86^{\prime \prime}$.
Dimensions of boxes in which machine is shipped, $74^{\prime \prime} \times 28^{\prime \prime}$ $x 32^{\prime \prime}$, and $75^{\prime \prime} \times 26^{\prime \prime} \times 20^{\prime \prime}$.

Price includes chuck, wrenches and everything else shown In cut, together with overhead works, boxed and delivered f. o. b. at Providence, R. I.

Price, $\$$
An Oil Pump, Pipes, etc., are turnished when desired.
Price, $\$$
For Tools and Attachments, see pages 1i2 to 184.

No. 0
. 3-8 in. $\times 2$ 1-4 in.
WIRE FEED SCREW MACHINE.
Automatic Feed.
Patented April 1, 1890; July 30, 1896; Sept. 29, 1896.

This machine has a hole $3-8^{\prime \prime}$ in diametor through largest feeding finger and turns any length to $21-4^{\prime \prime}$

No. 0

3-8 in. x 2 1-4 in. WIRE FEED SCREW MACHINE,

Automatic Feed.

The Spindle is of steel; the bearings are hardened, ground and lapped, and run in phosphor bronze boxes. The front box is provided with means of compensation for wear. The thrust is taken at rear end of spindle; the bearing parts are of hardened steel and phosphor bronze.

The Hole through largest feeding finger is $3-8^{\prime \prime}$ in diam. eter, through feed tube 13-32", through spindle without feed tube 11-16".

The Chuck and Wire Feed are automatic. By pressing the small lever on the front of the head-stock the chuck is dpened, stock fed forward and chuck closed. This operstion may be repeated several times if it should be desired to feed a greater length than that for which the mechanism is adjusted. The feeding mechanism can also be operated by the movement of the cross slide lever, thus avoiding the necessity of removing the hand from the lever. Ordfnary variations in size of stock make no difference in the accurate feeding of the machine. The feed is uniform and the holding capacity of the chuck' may be made as strong as desired without extra labor for the operation.

With one movement of either of the levers the machine feeds any length to 3 ". By pressing the lever several times, the stock is fed forward a length equal to the corresponding multiples of the distance for which the machine is adjusted. The adjustment is fine and readily made.

The Cone has 3 steps for $114^{\prime \prime}$ belt.
The Turret has 6 holes $5-8^{\prime \prime}$ in diameter; distance from centre of holes to top of slide, $11-16^{\prime \prime}$; greatest distance attainable between turret and front of chuck, $7^{\prime \prime}$.

Swing over cross slide, $31-8^{\prime \prime}$; length that can be turned, 2 1.4".
The Tank Table has a reservoir cast in the bottom providing for the collection of the strained oil.
The Counter-shaft has 2 friction pulleys $8^{\prime \prime}$ in diameter for 2 1-2" belts, and should run about 430 revolutions per minute for iron or steel, and 750 for brass.
Weight of machine ready for domestic shipment, about 685 lbs. ; for foreign shipment, about 780 lbs .
Net-Weight about 530 lbs. Floor Space, $26^{\prime \prime} \times 47^{\prime \prime}$.
Dimenions of boxes in which machine is shipped, $41^{\prime \prime} \mathrm{x}$ $19^{\prime \prime x} 19^{\prime \prime}$, and $53^{\prime \prime} \times 23^{\prime \prime} \times 18^{\prime \prime}$.

Price includes oil can, $3-8^{\prime \prime}$ spring collet and feeding finger, 2 wire stands, wrenches, and everything else shown in cut, together with overhead works, boxed and delivered f. o.b. at Providence, R. I. Price, $\$$

Oil Pump, Pipes, etc., furnished when desired. Price, 8
Counter-shaft with 3 pulleys. Price, $\$$
For Tools and Sets of Tools, see pages 172 to 184.

148

No. 1
 1-2 in. $\times 3$ in.
 WIRE FEED SCREW MACHINE.
 Automatic Feed.

Patented April 1, 1890; July 80, 1895; Sept. 29, 1896.

This machine has a hole 1-2" in diameter through largest feeding finger and turns any length to $\mathbf{3 '}^{\prime \prime}$.

No. 1

 1-2 in. x 3 in.
WIRE FEED SCREW MACHINE.

Automatic Feed.

The Spindle is of steel, the bearings are hardened, ground and lapped and run in phosphor bronze boxes. The front box is provided with means of conspensation for wear. The thrust is taken at the rear end of apindle; the bearing parts are of hardened steel and phosphor bronze.

The Hole through largest feeding finger is $1 \cdot 2^{\prime \prime}$ in diameter, through feed tube $17-32^{\prime \prime}$, through spindle without feed tube 13-16". Feeding fingers for $5-8^{\prime \prime}$ brass or other light work furnished when desired.

The Chuck and Wire Feed are automatic. By pressing the small lever on the front of the head-stock of the machine, the chuck is opened, stock fed forward and chuck closed. This operation may be repeated several times if it should be desired to feed a greater length than that for which the mechanism is adjusted. The chuck is so constructed that ordinary variations in size of the stock make no difference in accurate feeding, and no stop is usually reguired. The feed is uniform and the holding capacity of the chuck may be made as strong as desired without extra labor for the operation.

With one movement of the lever the machine feeds any length to $4^{\prime \prime}$. By pressing the lever neveral times, the stock is fed forward a length equal to the corresponding multiples of the distance for which the machine is adjusted. The adjustment is fine and readily made.

The Cone has 3 steps for $13-4^{\prime \prime}$ belt.
The Turret has 6 holes $3-4^{\prime \prime}$ in diameter; distance from centre of holes to top of slide, 1-2'; greatest distance attainable between turret and front of chuck, ! 3-4".

Swing over bed, 9 1-4'"; overcross slide, 4 1-8"; length that can be turned, $3^{\prime \prime}$.

The Tank Table has a reservoir cast in the bottom proviling for the collection of the strained oil.

The Counter-shaft has 2 friction pulleys $10^{\prime \prime}$ in diameter for $3^{\prime \prime}$ belts and should run about 305 revolutions per minute for iron or steel, and 550 for brass.

Weight of machine ready for domestic shipment, about 1009 llos ; for foreign shipment, about 1220 lls.

Net Weight, about 900 lbs. Floor Space, $29^{\prime \prime} \times 59^{\prime \prime}$.
Dimensions of boxes in which machine is shipped, $50^{\prime \prime} \mathbf{x}$ $22^{\prime \prime} \times 22^{\prime \prime}$, and $65^{\prime \prime} \times 2 \overline{5}^{\prime \prime} \times 18^{\prime \prime}$.

Price includes ofl can, $1-2^{\prime \prime}$ spring collet and feeding finger, wrenches, 2 wire stands and everything else shown In cut, together with overhead works, boxed and delivered f. o. b. at Providence, R. I. Price, $\$$

Oil Pump, Pipes, etc., furnished when desired. Price, $\$$
Counter-shaft furnished with 3 pulleys.
Price, ${ }^{\$}$
For Tools and Attachments, see pages 17:2 to 1st.

No. 2
 $7-8 \mathrm{in} . \times 4 \mathrm{in}$.
 WIRE FEED SCREW MACHINE.
 Automatic Feed.

Patented April 1, 1890; July 30, 1895; Sept. 29, 1896.

This machine has a hole 7-8" in diameter through largest feeding finger and turns any length to $4^{\prime \prime}$.

No. 2 7-8 in. $x 4$ in. WIRE FEED SCREW MACHINE. Automatic Feed.

The Spindle is of steel ; the bearings are hardened, ground and lapped and run in phosphor bronze boxes. The front box is provided with means of compensation for wear. The thrust is taken at rear end of spindle; the bearing parts are of hardened steel and phosphor bronze.

The Hole through largest feeding finger is $7-8^{\prime \prime}$ in diameter, through feed tube $15-16^{\prime \prime}$, through spindle without feed tube, 1 3-16"

The Chuck and Wire Feed are automatic. By pressing the small lever on the front of the head-stock the chuck is opened, stock fed forward and chuck closed. This opera. tion may be repeated several times if it should be desired to feed a greater length than that for which the mechanism is adjusted. The feeding mechanlsm can also be operated by the movement of the cross slide lever, thus avoiding the necessity of removing the hand from the lever.

Ordinary variations in size of stock make no difference in the accurate feeding of the machine. The feed is uniform and the holding capacity of the chuck may be made as strong as desired without extra labor for the operation.

With one movement of either of the levers, the machine feeds any length to $5^{\prime \prime}$. By pressing the lever several times, the stock is fed forward a length equal to the cor responding multiples of the distance for which the machine is adjusted. The adjustment is fine and readily made.

The Cone has 3 steps for $21-2^{\prime \prime}$ belt.
The Turret has 6 holes $1^{\prime \prime}$ in diameter; distance from centre of holes to top of slide, $2^{\prime \prime}$; greatest distance attain. able between turret and front of chuck, 11 ".

Swing over bed, 10 1-2"; over cross slide, $5^{\prime \prime}$; length that can be turned, $4^{\prime \prime}$.
The Tank Table hes a reservoir cast in the bottom providing for the collection of the strained oil.

The Counter-shaft has 2 friction pulleys 12 " In diameter for 3 1-2" belts, and should run about 220 revolutions per minute for 1 ron or steel, and 380 for brass.
Weight of Machine ready for domestic shipment, about $1: 25 \mathrm{lbs}$; for foreign shipment, about 1800 lbs .

Net Weight, rbout 1375 lbs . Floor Space, $33^{\prime \prime} \times 72^{\prime \prime}$.
Dimensions of boxes in which machine is shipped, $644^{\prime \prime} \times 25^{\prime \prime}$ $\pm 26^{\prime \prime}$, and $66^{\prime \prime} \times 28^{\prime \prime} \times 21^{\prime \prime}$.
Price includes oil can, $7-8^{\prime \prime}$ spring collet and feeding fin. ger, wrenches, and everything else shown in cut, together with overhead works, boxed and delivered f.o.b. at Providence, R. I. Price, $\$$

Oil Pump, Pipes, etc., furnished when desired. Price, $\$$
Counter-shaft with 3 pulleys. Price, $\$$
Power feed for turret slide, see page 177.
For Tools and Sets of Tools, see pages 172 to 184.

No. 4

$11-4$ in. $\times 6$ in.

WIRE FEED SCREW MACHINE.

Roller Feed.

Patented July 24, 1894; Other Patents Pending.

This machine has a hole $19-32^{\prime \prime}$ in diameter through spindle and turns any length to $6^{\prime \prime}$.

No. 4 1-4 in. $\times 6$ in.

WIRE FEED SCREW MACHINE.

Roller Feed.

The Spindle is of steel; the bearings are hardened, ground and lapped and run in phosphor bronze boxes. The front box is provided with means of compensation for wear. The thrust is taken at rear end of spindle; the bearing parts are of hardened steel and phosphor bronze.

The Hole through spindle is $19.33^{\prime \prime}$.
The Chuck and Roller Feed are automatic. By swinging the lever on the front of the head-stock toward the rear of the machine, the chuck is opened and the stock fed forward against the stock stop; and by returning the lever to a vertical position, the chuck is closed. The mechanism is so arranged as to prevent any possibility of the lever becoming loosened and causing the chuck to open.

The Chuck is adjustable and takes all sizes of stock from 3-8" to $11-4^{\prime \prime}$ in diameter. It is exceptionally strong and compensates automatically for variations as great as $1.32^{\prime \prime}$ in the size of stock. There are two hardened jaws that interlock and will take round, square or hexagonal stock. Means are provided for attaching special jaws for irregular or odd-shaped pieces.
© The Roller Feed is self-contained and located in the cone at the front end. Graduations on the disk at the front of the cone facilitate setting the feed to the required size of stock. It feeds any length within the capacity of the machine without the neceasity of manipulating cams or similar devices. All parts most subject to wear are carefully hardened and protected from dirt and injury.

The Feed of Turret Slide is automatic and has 3 changes evenly graded from $.005^{\prime \prime}$ to $.015^{\prime \prime}$ to one revolution of spindle.

The Cone has 3 steps for $3^{\prime \prime}$ belt.
The Turret has 7 holes $11.2^{\prime \prime}$ in diameter; distance from centre or holes to top of slide, $2^{\prime \prime}$; greatest distance attainable between turret and front of chuck, $11^{\prime \prime}$.

Swing over bed, $133-8^{\prime \prime}$; over cross slide, $5^{\prime \prime}$; length that can be turned, $6^{\prime \prime}$.

The Tank Table has a reservoir cast in the bottom providing for the collection of the strained oil.

The Counter-shaft has 2 friction pulleys $14^{\prime \prime}$ in diameter for $31-2^{\prime \prime}$ belts and should run about 190 revolutions per minute.

Weight of Machine ready for domestic shipment, about 1500 lbs.; for foreign shipment, about 1700 lbs.

Fet Weight, about 1300 lbs. Floor Space, $27^{\prime \prime} \mathrm{x} 62^{\prime \prime}$.
Dimensions of box in which machine is shipped, $62^{\prime \prime} \times 20^{\prime \prime}$ $\times 28$ ".

Price includes pump and piping, chuck, wrenches and everything else shown in cut. together with overhead works, boxed and delivered f. o. b. at Providence, R. I.
Price, $\$$
Counter-shaft with 3 pulleys. Price, $\$$

* For Tools and Sets of Tools, see pages 172 to 184.

154

No. 00
5-16 in. $x 1$ in.

AUTOMATIC SCREW MACHINE.

Patented April 1, 1890; May 16, 1888; July 80, 1895; May 17, 1898 ; April 11, 1899.

This machine has a hole $5-16^{\prime \prime}$ in diameter through largest feeding finger and turns any length to $1^{\prime \prime}$.

No. 00

$5-16$ in. $x 1$ in.

AUTOMATIC SCREW MACHINE.

The Spindle is of steel; the bearings are hardened, ground and lapped and run in phosphor bronze boxes. The front box is provided with means of compensation for wear. The thrust is taken at rear end of spindle; the bearing parts are of hardened steel and phosphor bronze. The spindle has 2 friction clutch pulleys, $4^{\prime \prime}$ in diameter for $1^{\prime \prime} 4^{\prime \prime}$ belts. These palleys are bushed with steel and run on roller bear. ings. There are 12 changes of speed, varying from 4:0 to 2400 revolutions per minute.
The Hole through largest feeding fingeris $5.16^{\prime \prime}$ in diameter, through feed tube, 21-64".
The Collets are easily changed and adjusted by nuts at the rear end of spindle.
The Turret has 5 holes, $5-8^{\prime \prime}$ in diameter, and revolves vertically on the side of the turret silde. Greatest distance attainable between front of spindle and turret, 234".

The Movements of the turret slide, the changing of tools, the operation of chuck, the feeding of stock and the reversing of spindle are controlled by quick running cams driven by shafts which maintain a constant speed, thus insuring rapid movements irrespective of the size of the work. These cams are controlled by adjustable dogs which are easy of access and easily adjusted. Instructions and diagrams for laying out the cams are sent with each machine. The return and change movements are extremely rapid and, by the accurate timing that the machine admits of, work can be rapidly done.

The Feeding Mechanism is accurate, feeds any length to $\mathbf{g}^{\prime \prime}$ and any length to $1^{\prime \prime}$ can be turned. By operating the mechanism several times the stock is fed forward a length equal to the corresponding multiples for which the machine is adjustec. The adjustment is fine and readily made.

The Cross Slide Tools are on separate slides so that one or both can be used as desired.

The Counter-shaft has tight and loose pulleys $8^{\prime \prime}$ in diam. eter for $3^{\prime \prime}$ belt, and should run about 450 revolutions per minute.

Weight of machine ready for domestic shipment, about 1265 lbs.; for foreign shipment, about 1400 lbs.

Net Weight, ahout 1000 lhs. Floor Space, $22^{\prime \prime} \times 40^{\prime \prime}$.
Dimensions, of boxes in which machine is shipped, 44"x $90^{\prime \prime}$ $\mathbf{x} 24^{\prime \prime}$, and $74^{\prime \prime} \times 26^{\prime \prime} \times 20^{\prime \prime}$.
Price includes spring collet and feeding finger, set of cam blanks, change gears for making from 2 to 20 pieces per minute, 2 wire stands and everything else shown in cut, together with overhead works, boxed and delivered f.o.b. at Providence, R. I.
Price, $\$$
For Tools and Attachments, see pages $1: 2$ to 185.

No. 0

1-2 in. x $13-4 \mathrm{in}$.

AUTOMATIC SCREW MACHINE.

Patented April 1, 1890, May 16, 1893 ; July 30, 1895; May 17, 1898; April 11, 1899.

This machine has a hole $1-2^{\prime \prime}$ in diameter through largest feeding finger and turns any length to $18-4^{\prime \prime}$.

158

No. 0

1-2 in. $x 13-4$ in.

AUTOMATIC SCREW MACHINE.

The Spindle is of steel; the bearings are hardened, ground and lapped and run in phosphor bronze boxes. The front box is provided with means of compensation for wear. The thrust is taken at rear end of spindle; the bearing parts are of hardened steel and phosphor bronze. The spindle has 2 friction clutch pulleys, $6^{\prime \prime \prime}$ In diameter for $2^{\prime \prime}$ belts. These pulleys are bushed with steel and run on roller bearings. There are 10 changes of speed, varying from 150 to 1800 rev. olutions per minute.
The Hole through largest feeding finger is $1-2^{\prime \prime}$ in dlameter, through feed tube 17-32:

The Collets are easily changed and adjusted by nuts at the rear end of spindle.

The Turret has 6 holes, $3.4^{\prime \prime}$ in diameter, and revolves ver. tically on the side of the turret slide. Greatest distance attainable between front of spindle and turret, 4 1-2".

The Movements of the turret slide, the changing of tools, the operation of chuck, the feeding of stock and the reversing of spindle are controlled by quick running cams driven by shafts which maintain a constant speed, thus insuring rapid movements irrespective of the size of the work. These cams are controlled by adjustable dogs which are easy of access and easily adjusted. Instructions and diagrams for laying out the cams are sent with each machine. The return and change movements are extremely rapid, and, by the accurate timing that the machine admits of, work can be rapidly done.

The Feeding Mechanism is accurate, feeds any length to $3^{\prime \prime}$ and any length to $13-4^{\prime \prime}$ can be turned. By operating the mechanism several times the stock is fed forward a length equal to the corresponding multiples for which the machine is adjusted. The adjustment is fine and readily made.

The Cross Slide Tools are on separate slides, so that one or both can be used as desired.

The Counter-shaft has 2 tight and loose pulleys $10^{\prime \prime}$ in diam. eter, for $31-4^{\prime \prime}$ belts, and should run about 140 and 420 revolutions per minute.
Weight of maching ready for domestic shipment, about 1735 lbs; for foreign shipment, about 1925 lbs.

Net Weight, about 1400 lbs. Floor Space, $23^{\prime \prime} \times 51^{\prime \prime}$.
Dimensions of boxes in which machine is shipped, $53^{\prime \prime} \times 25^{\prime \prime}$ $\times 27^{\prime \prime}$, and $80^{\prime \prime} \times 27^{\prime \prime} \times 22^{\prime \prime}$.
Price includes spring collet and feeding finger, set of cam blanks, change gears for making from 1 piece in 2 minutes to 12 pieces in 1 minute, 2 wire stands, and everything else shown in cut, together with overhead works, boxed and delivered f. o.b. at Providence, R. I.

Price, ${ }^{8}$
For Tools and Attachments, see pages 172 to 186.

No. 2

7-8 in. x 2 1-2 in.
 AUTOMATIC SCREW MACHINE.

Patented April 1, 1890; May 16, 1893; July 30، 1895; May 17, 1898 ; April 11, 1899.

This machine has a hole $7-8^{\prime \prime}$ in diameter through largest feeding finger and turns any length to $21-2^{\prime \prime}$.

No. 2

7-8 in. $\times 2$ 1-2 in. AUTOMATIC SCREW MACHINE.

The Spindle is of steel; the bearings are bardened, ground and lapped and run in phosphor bronze boxes. The front box is provided with means of compensation for wear. The thrust is tatien at rear end of spindle; the bearing parts are of hardened steel and phosphor bronze. The spindle has 2 friction clutch pulleys, $7^{\prime \prime}$ in diameter for 21% belts. These pulleys are bushed with steel and run on roller bearings. There are 12 changes of speed, varying from 120 to 1200 revolutions per minute. Spindle speeds changed automatically.

The Hole through largest feeding finger is $7.8^{\prime \prime}$ in diame. ter, through feed tube, $11-32^{\prime \prime}$. Feeding tingers for Brass or other light work to take stock $1^{\prime \prime}$ in diameter, furnished when desired.

The Collets are easily changed and adjusted by a nut between front bearing and irst pulley on xpind'e.

The Turret has 6 holes, $1^{\prime \prime}$ in diameter, and revolves reatically on the side of the turret slide. Greatest distanceattan. able between front of spindle and turret, $61.4^{\prime \prime}$; least $21-2^{\prime \prime}$.

The Movements of the turret slide, the changing of tools, the operation of chuck, the feeding of stock and the reversing of spindle are controlled by quick running cams driven by shafts which maintain a constant speed, thus insuring rapid movementsirrespective of the size of the work. These cams are controlled by adjustable dogs which are easy of access and easily adjusted. Instructions and diagrams for laying out the cams are sent with each machine. The return and change movements are extremely rapid.

The Feeding Mechanism is accurate, feeds any length to $4 "$ and any length to $21-2$ " can be turned. By operating the mechanism several times the stock is fed forward a length equal to the corresponding multiples for which the machine is adjusted. The adjustment is fine and readily made.

The Cross Slide Tools are on separate slides so that one or both can be used as desired.

The Counter-shaft has two tight and loose pulleys 12" in diameter for $31-2^{\prime \prime}$ belts, and should run about 100 and 340 revolutions per minute.

Weight of machine ready for domestic shipment, about 2650 lbs.; for foreign shipment, about $2!(\%)$ lhs.
Net Weight, about 2125 lbs . Floor Space, $26^{\prime \prime} \times 60^{\prime \prime}$.
Dimensions of boxes in which machine is shipped, $63^{\prime \prime} \times 28^{\prime \prime}$ $\times 29^{\prime \prime}$, and $96^{\prime \prime} \times 33^{\prime \prime} \times 26^{\prime \prime}$.
Price includes spring collet and feeding finger, set of cam blanks, change gears for making from 20 to 600 pieces per hour, 2 wire stands and everything else shown in cut, together with overhead works, boxed and delivered f.o.b. at Providence, R. I.

Price, \$
For Tools and Λ ttachments, sec pages 172 to 189.

No. 00

$5-16 \mathrm{in} x$.1 in.

AUTOMATIC TURRET FORMING MACHINE.
For Work Not Tapped.
Patented April 1, 1890 ; July 30, 1896; May 17, 1898; April 11, 1899.

This machine has a hole $5-16^{\prime \prime}$ in diameter through largest feeding finger and turns any length to $1^{\prime \prime}$.

No. 00 5-16 in. $\times 1$ in. AUTOMATIC TURRET FORIING Machine.

For Work Not Tapped.

The 8 -indle is of steed; the bearinge are hardemed, ground and lapped and run in phospbor bionse boxes. The frout trox Is provided with means of compensation for wear. The throt is takea at rear end of spindle; the bearing parts are of hardeaed steel and phoephor bronze.

The Come has 4 eteps, the largert $41-2^{\circ}$ in diameter for 114^{*} belt, and gives 4 changes of spibdle speed, from stu $10 \%+100$ revo lutions per nipute.

The Plele throngh largeat feeding finger is $\mathrm{E} .16^{\prime \prime}$ in diancter, throngh feed tabe, $21-64^{\prime \prime}$.

The Collets are eanly changed and adjuated by nots at rear end of spindle.

The Turret bas 5 holea, $5-5^{\circ}$ in diameter. and recolves ver. tically on the side of the turret alide. The iorrtituolt ium uny Jeagth to $1^{\prime \prime}$. Greateat disumoe atainable beimetl frout of sqind le and turret, $23-4^{\prime \prime}$.

The Fovenents of the turret eide, the chatiging of the tocis, the operation of the chock and the fer. $i=$ of ticot are controlled by quick runving cunt. drivey $b y$ ciafte Which maintain a constam sperd, itul ivalr:ig rajud wovementa irrespective of the size of ithe an:t. Titent callut are controlled by edjuetable doge, which att eaty of wowt and
 Which can the chenpty formed und t at.! b ithind. Inatructions and diagrams for luring oul the caluf a!ternt witt tach machine.

 anchine, the stock can be fed furwara a jetig L greater thav 2 ".

The Cress stide ToDis art on funtute flides ac iliat one or both can tre need at desired.

Tables piving the proper fowad tor different rizet ayd kinds of stock are sent with tach machit,

 minute

Weigat of machine rrydr for domestir shipment, about

Det Weight, uboun 741,$1 ;,$ Floor Spact. $\because 2$ v $41^{\prime \prime}$.

Price inchades opring coliet und fading finger, set of cam Honks, change geart for makiug from :1t 21 forsef per minute, 2 wire standt, aud eterritume tist tucul in. "ut. together with owerhead workf toxed and detivered f. . . h. ai Providenee, I. In Price,

Fer Teals and Attachmente ser pages 1:\% 10] 5.

No. 0
 1-2 in. x $13-4 \mathrm{in}$.
 AUTOMATIC TURRET FORMING MACHINE.

For Work Not Tapped.
Patented April 1, 1890; July 30, 1895; May.12, 1898; April 11, 1899.

This machine has a hole $1-2^{\prime \prime}$ in diameter through largest feeding finger, and turns any length to $13-4^{\prime \prime}$.

No. 0
 1-2 in. x 1 3-4 in.
 AUTOMATIC TURRET FORMING MACHINE.

For Work Not Tapped.

The Spindle is of steel; the hearings are hardened, ground and lapped and run in phosphor bronze boxes. The front box is provided with means of compensation for wear. The thrust is taken at rear end of spindle; the learing parts are of hardened steel and phosphor bronze.

The Cone has 3 steps, the largest $61.4^{\prime \prime}$ in diameter for 2 1.4" belt, and gives 6 changes of spindle speed, from 350 to 1800 revolutions per minute.

The Hole through largest feeding finger is $1.2^{\prime \prime}$ in diameter, through feed tule, $17.3 z^{\prime \prime}$.
The Collets are easily changed and adjasted by nuts at rear end of spindle.

The Turret has 6 holes, $3-4^{\prime \prime}$ in diameter ami revolses vertically on the side of the turret slide. The turret tool-turn any length to $13-4^{\prime \prime}$. Greatest distance attainable between front of spindle and turret, $41 \cdot 2^{\prime \prime}$.

The Movements of the turret slide, the changing of the tools, the operation of the chuck and the feeding of stock k are controlled by quick running camis, driven by shat ts which maintain a constant speed, thus insuring rapid movements irrespective of the size of the work. These cams are controlled ly adjustable doge, whichare easy of accessaid quickly adjusted. The lead and cross slide cams are steel disks, which can be cheaply formed and easily adjusted. Instructions and diagrams for laying out the cains are sent with each machine.

The Feeding Mechanism is accurate and feeds any length to $3^{\prime \prime}$, and, by allustirg the extra dogs furnished with the machine, the stock can be fed forward a length greater than $3^{\prime \prime}$.

The Cross Slide Tools are on separate slides so that one or both can be used as desired.

Tables giving the proper speed for differert sizes and kinds of stock are sent with each machine.

The Counter-shaft has 2 tight and 2 loose pulleys $\mathrm{s}^{\prime \prime}$ in diam. eter, for $3^{\prime \prime}$ lelt and should run about 200 and 400 revolu. tions per minute.
Weight of machine ready for domestic shipment, about 1350 lbs.; for foreign shipment, about 1550 lbs,
Net Weight, about 1160 llis . Floor Space, $23^{\prime \prime} \times 51^{\prime \prime}$.
Dimensions of hoxes in which machine is shipped, $57^{\prime \prime} \times 25^{\prime \prime}$ $\times 27^{\prime \prime}$, and $65^{\prime \prime} \times 28^{\prime \prime} \times 20^{\prime \prime}$.

Price includes spring collet and feeding finger, set of cam blanks, change gears for making from 1 piece in 2 minutes to 12 in 1 minute, 2 wire stands, and everything else shown in cut, together with overhead works boxed and delivered f. o. b. at Providence, R. I. Price, $\$$

For Tools and Attachments, sec pages 172 to 186.

164

No. 2

7-8 in. $\times 2$ 1-2 in.
AUTOMATIC TURRET FORMING MACHINE.

For Work Not Tapped.
Patented April 1, 1890; July 30, 1895; May 17, 1898;
April 11, 1899.

This machine has a hole $7-8^{\prime \prime}$ in diameter through largest feeding finger, and turns any length to $21-2^{\prime \prime}$.

No. 2
 $7-8 \mathrm{in} \times 2$ 1-2 in.
 AUTOMATIC TURRET FORMING MACHINE. For Work Not Tapped.

The Spindle is of steel; the bearings are hardened, ground and lapped and run in phosphor bronze boxes. The front jox is provided with means of compensation for wear. The thrust is taken at rear end of spindle; the bearing parts are of hardened steel and phosphor bronze.

The Cone has 3 steps, the largest $61-2^{\prime \prime}$ in diameter for 2 3."" belt, and gives 8 changes of spindle speed, from 180 to 1440 revolutions per minute.

The Hole through largest feeding finger is $7-8$ " in diameter, through feed tube 11-32:.

The Collets are easily changed and adjusted by a nut between Orst bearing and cone pulley on spindle.

The Turret has 6 holes, 1 " in diameter, and revolves vertically on the side of the turret slide. The turret tools turn any length to $21.2^{\prime \prime}$. Greatest distance attainable between front of spindle and turret, 6 1-4'; least, 2 1-2".

The Movements of the turret slide, the changing of the tools, the operation of the chuck and the feeding of stock are controlled by quick running cams, driven by shafts which maintain a constant speed, thus insuring rapid movements irrespective of the size of the work. These cams are controlled by adjustable dogs, which are casy of access and quickly adjusted. The leall and cross slide cams are steel or cast iron disks, which can le cheaply formed and easily adjusted. Instructions and diagrams for laying out the cams are sent with each machine.
The Feeding Mechanism is accurate and feeds any length to $4^{\prime \prime}$, and hy aljusting the extra dogs furnished with the machine, the stock can be fed forward a length greater than $4^{\prime \prime}$.

The Cross Slide Tools are on separate slides so that one or both can be used as desired.

Tables giving the proper speed for different sizes and kinds of stock are sent with each machine.
The Counter-shaft has two friction pulleys 12 " in diam. eter for 3 1-2" belts and should run about $1: 0$ and 340 revolutions per minute.

Weight of machine ready for domestic shipment, about 2180 lbs.; for foreign shipment, about 24 :. $\mathrm{ll}, 8$.
Net Weight, about 1960 lbs . Floor Space, 2li"x 60".
Dimensions of boxes in which machine is shipped, 63 " $\times 28^{\prime \prime}$ $\times 29^{\prime \prime}$, and $78^{\prime \prime} \times 29^{\prime \prime} \times 26^{\prime \prime}$.
Price includes spring collet and feeding finger, set of cam blanks, change gears for making from 20 to 600 pieces per hour, 2 wire stands and everything else shown in cut, together with overhead works, hoxed and delivered f. o. b at Providence, 1 . I. Price, $\$$

For Tools and Attachments, see pages 172 to 188.

No. 00
 $5-16 \mathrm{in} . \times 10 \mathrm{in}$.
 AUTOMATIC CUTTING-OFF MACHINE.

Patented April 1, 1890; July 30, 1895; May 17, 1898;
A! ril 11, $\mathbf{1 8 4 9}$.

This machine has a hole $5-10^{\prime \prime}$ in diameter through largest feeding finger and feeds any length to $2^{\prime \prime}$ at a single movement of feeding mechanism, or to $10^{\prime \prime}$ by successive movements.

No. 0
 1-2 in. $x 12$ in.
 AUTOMATIC CUTTING-OFF

MACHINE.

The Spindle is of steel; the bearings are hardened, ground and lapped and run in phosphor bronze boxes. The front box is provided with means of compensation for wear. The thrust is taken at rear end of spindle; the bearing parts are of hardened steel and phosphor bronze.

The Cone has fonr steps, the largest $61.4^{\prime \prime}$ in diameter, for $13-4^{\prime \prime}$ belt, and gives 4 changes of spindle speed, from 420 to 1800 revolutions per minute.

The Hole through largest feeding finger is $1.2^{\prime \prime}$ in diame. ter, through feed tube 17-32".

The Collets are easily changed and adjusted by nuts at rear end of spindle.

The Tool slide has a movement of $13-4^{\prime \prime}$, and a tool holder with hole $3-4^{\prime \prime}$ in diameter. The tool holder can be adjusted to any length between $2^{\prime \prime}$ and $1 \times{ }^{\prime \prime}$ from end of spindle.

The operation of the chuck and the feeding of stock are controlled by quick running cams driven by shafts which maintain a constant speed, thus insuring rapid movements irrespective of the size of the work. These cams are controlled by adjustable dogs which are easy of access and easily adjusted. The lead and cross slide cams are steel disks, which can be cheaply formed and quickly placed in position. Instructions and diagrams for laying out cams are sent with each machine.

The Feeding Mechanism fceds any length to $3^{\prime \prime}$, and, by adjusting the extra dogs furnished with the machine, the stock can be fed forward any length to $12^{\prime \prime}$.

The Cross Slide Tools are on separate slides so that one or both can be used as desired.

Tables, giving the proper speed for different sizes and kinds of stock, are sent with each machine.

The Counter-shaft has tight and loose pulleys $8^{\prime \prime}$ in diameter for $3^{\prime \prime}$ belt, and should run about 400 revolutions per minute.

Weight of machine ready for domestic shipment, about 1290 lbs.; for foreign shipment, about 1400 lbs .

Net Weight, about 1025 lbs. Floor Space, $23^{\prime \prime} \times 51^{\prime \prime}$.
Dimensions of boxes in which machine is shipped, $54^{\prime \prime} \times 27^{\prime \prime}$ $x 25^{\prime \prime}$ and $65^{\prime \prime} \times 28^{\prime \prime} \times 21^{\prime \prime}$.
Price includes spring collet and fecding finger, set of cam blanks, change gears for making from 1 piecc in $11-2$ min. utes to 12 pieces in 1 minute, 2 wire stands and everything else shown in cut, together with overhead works, boxed and delivered f. o. b. at Providence, R. I.

Price, $\$$
For Tools and Attachments, see pages 172 to 186.

170

No. 1
 $5-8 \mathrm{in} . \times 15 \mathrm{in}$.
 AUTOMATIC CUTTING-OFF
 MACHINE.

Patented April 1, 1890; July 80, 1895; May 17, 1808; April 11, 1899.

This machine has a hole $5-8^{\prime \prime}$ in diameter through largest feeding finger and feeds any length to $4^{\prime \prime}$ at a single movement of feeding mechanism, or to $15^{\prime \prime}$ by successive movements

No. 1

$5-8 \mathrm{in} . \times 15 \mathrm{in}$.

AUTOMATIC CUTTING-OFF MACHINE.

The Spindle is of steel; the bearings are hardened, ground and lapped and run in phosphor bronze boxes. The front box is provided with means of compensation for wear. The thrust is taken at rear end of spindle; the bearing parts are of hardened steel and phosphor bronze.
The Cone has four steps, the largest $61-2^{\prime \prime}$ in diameter, for $2{ }^{2}$ belt, and gives 4 changes of spindle speed, from 360 to 1440 revolutions per minute.

The Hole through largest feeding finger is $5-8^{\prime \prime}$ in diameter, through feed tube, 21- $82^{\prime \prime}$.
The Collets are easily changed and adjusted by a nut between front bearing and cone pulley on spindle.
The Tool Slide has a movement of 2 , and a tool holder with hole 1" in diameter. The tool holder can be adjusted to any length between $21-2^{\prime \prime}$ and $15^{\prime \prime}$ from end of spindle.

The Operation of the chuck and the feeding of stock are controlled by quick running cams, driven by shafts which maintain a constant speed, ihus insuring rapid movements rrespective of the size of the work. These cams are controlled by adjustable dogs which are easy of access and easily adjusted. The lead and cross slide cams are steel or cast iron disks, which can be cheaply formed and quickly placed in position. Instructions qud diagrams for laying out cams are sent with each machine.
The Feeding Mechanism feeds any length to 4 ", and, by adjusting the extra dogs furnished with the machine, the stock can be fed forward any length to $15^{\prime \prime}$.
The Cross Slide Tools are on separate slides, so that one or both can be used as desired.
Tables, giving the proper speed for different sizes and kinds of stock are sent with each machine.

The Counter-shaft has tight and loose pulleys $10^{\prime \prime}$ in diam. eter for 3 1-4" belt, and should run about 400 revolutions per minute.
Weight of machine ready for domestic shipment, about 1620 lbs.; for foreign shipment, about 1920 lbs ;
Net Weight, about 1380 lbs. Floor Space, $25^{\prime \prime} \times 60{ }^{\prime \prime}$.
Dimensions of boxes in which machine is shipped, $62^{\prime \prime} \times 28^{\prime \prime}$ x'28", and 73" x $27^{\prime \prime} \times 24^{\prime \prime}$.

Price includes spring collet and feeding finger, set of cam blanks, change gears for making from 40 to 600 pleces per hour, 2 wire stands and everything else shown in cut, together with overhead works, boxed and delivered f. o.b. at Providence, R. I.

Price, $\$$
For Tools and Attachments, see pages 172 to 187:
are for any Screw Machine operated by hand and have an improved clutch mechan. ism which avoids the hard shock and jar usual with such tools when released. The parts subject to wear are small and easily renewed. All parts are hardened.

No. of Holder.	No. of Machine * where used.	Releas. iug.	Diameter of Hole for Tap or Bushing.	Depth of Hole to Receive Tap.	Length of Body.	Diameter of Sbank.	Length of Shank.	Price.
00	00 A utomatic	No	No. 5 Taper	5.8'	15.16"	$5.8{ }^{\prime \prime}$	$11.8{ }^{\prime \prime}$	$\$ 400$
00 A	00 Automatic	No	1-4"	3.8	1.2	5.8	11.8	220
00B	00 Automatic	Yes	1.2	$1-2$	11.16	5.8	11.8	450
10	0 Wire Feed	Yes	1.2	11.16	15.16	5.8	17.16	400
11	1 W.F.; 1 Pl.	Yes	5.8	13-16	17.16	3-4	2	500
12	2 W. F.; 2 Pl.	Yes	1	13.16	2	1	21.2	700
13		Yes	1	13.16	21.2	11.4	31.4	1000
14	4,5 \& 6 Plain	Yes	1	13.16	21.2	11.2	31.4	1000
16	4, 5 \& 6 Plain	Yes	11.2	15.8	27.8	11.2	31.4	1500
20	0 Automatic	No	$5-8$	13.16	17.16	3-4	11.2	450
21	1 Automatic	No	3.4	15.16	11.2	1	13.4	500
22	2 Automatle	No	1	13.16	19.16	1	13.4	500
223	2 Automatic	Yes	1	13.16	2	1	13.4	700

[^2]
HOLLOW MILLS

With Inserted Blades．

These Mills，for use in the turrets of screw machines，are of great advantage in making a large range of work，as screws，bolts，pins，etc．，and work of a similar class．

The holders are of steel，and the slots for receiving the blades are milled accurately to size．The blades are held firmly in position by a simple clamping device，which is operated by nuts at the back of head．

ROUGHING．

Each holder is furnished with one set of blades（3）of any segular size required．

$\begin{aligned} & \text { 룰 } \\ & \text { 잉 } \\ & \dot{\delta} \end{aligned}$					$\begin{aligned} & \text { 哥 } \\ & \text { 品 } \\ & \text { 品 } \\ & \mathrm{B} \end{aligned}$			Number of Machine where used．
			In．	In．	In．	In．	In．	
＊00	\＄600	\＄150	． 03 to $\frac{1}{4}$	1	$1 \frac{1}{2}$	$\frac{5}{8}$	$1 \frac{5}{16}$	00 Automatic．
1	1100	300	$\frac{3}{16}$ to $\frac{1}{2}$	$2 \frac{1}{2}$	$2 \frac{1}{4}$	$\frac{3}{4}$	2	1 Pl．，＇97，\＆ 1 W．F．
3	1200	375	$\frac{1}{4}$ to $\frac{3}{4}$	$3^{\frac{1}{4}}$	3	1	$2 \frac{1}{2}$	$2 \mathrm{Pl},{ }^{\prime} 97, \& 2$ W．F．
4	1200	375	$\frac{1}{4}$ to ${ }^{3}$	$3 \frac{1}{7}$	3	$1 \frac{1}{15}$	$3 \frac{1}{4}$	4 \＆ 5 Pl．，prior to＇96．
5	1200	375	$\frac{1}{4}$ to $\frac{3}{4}$	31	3	$1 \frac{1}{5}$	3	6 Pl．，prior to＇96．
6	1400	400	$\frac{1}{2}$ tol ${ }^{\frac{1}{8}}$	$3 \frac{3}{8}$	$3 \frac{1}{2}$	$1 \frac{1}{2}$	$3 \frac{1}{4}$	4， 5 \＆ $6 \mathrm{Pl} .$, ＇96．

Blades turn large as follows：1－4＂to $7-16^{\prime \prime}$ about .012 ；1－2＂ to $3-4^{\prime \prime}$ about $.016^{\prime \prime} ; 13-16^{\prime \prime}$ to $11-8^{\prime \prime}$ ，about $.02^{\prime \prime}$ ．

Blades for Nos．3， 4 and 5 interchange．
When ordering，give diameter of holes in turret．
Set of blades turn one size only．
＊One set of blades turn all sizes within capacity．
See opposite page for Finishing Mills．

HOLLOW MILLS

With Inserted Blades．

FINISHING．

The Flnishing Mills have 2 blades and 2 back rests which will turn any size within the capacity of the mill．

			$\begin{aligned} & \dot{\circ} \\ & \text { 宫 } \\ & \text { B } \end{aligned}$			$\begin{aligned} & \text { 兑 } \\ & \text { 曾 } \\ & \dot{A} \\ & \mathbf{A} \\ & \mathbf{C} \end{aligned}$		Number of Machine where used．
100	$\$ 700$	\＄200	In． 03 tol	In．	In．	In．	In．	00 Automatic．
11	1300	400	$\frac{3}{16}+0^{\frac{1}{2}}$	$2 \frac{1}{2}$	$2 \frac{1}{4}$	4	2	1 Pl．，＇97，\＆ 1 W．F．
13	1400	475	1to $\frac{1}{4}$	$3 \frac{1}{4}$	3	1	$2 \frac{1}{2}$	$2 \mathrm{Pl},{ }^{\prime} 97$, \＆ 2 W．F．
14	1400	475	年to $\frac{3}{4}$	31	3	1_{1}^{16}	34	4 \＆ 5 Pl．，prior to＇96．
15	1400	475	1to $\frac{3}{4}$	31	3	14	34	$6 \mathrm{Pl} .$, prior to＇96．
16	1600	500	$\frac{1}{2}$ to1 $\frac{1}{8}$	3 $\frac{3}{8}$	32	12		4， 5 \＆ 6 Pl．，＇96．

Two extra blades are included in＂Price of Mill Com plete．＂As the blades wear much faster than the back reste it is more economical to use the blades alternately． Blades for Nos．13， 14 and 15 interchange． ＊One set of blades turn all sizes within capacity． When ordering，give diameter of holes in turret．

SPRING COLLETS AND FEEDING FINGERS
 FOR AUTOMATIC AND WIRE FEED SCREW MACHines.

spring Collet.

Feeding Finger.

No. 00 Automatic.
SPRING COLLETS.

, 8.32", 1-8", $532^{\prime \prime}, 3-16^{\prime \prime}, 7-32^{\prime \prime}, 1.4^{\prime}$, | Price |
| :---: |
| Ezch. |
| $\$ 2$ |

Square or Hexagonal, made to order 400
Metric, Round: $2 \mathrm{~m} / \mathrm{m}$ to $8 \mathrm{~m} / \mathrm{m}$, varying by $1 \mathrm{~m} / \mathrm{m}$. 200 FEEDING FINGERS.

Kound: 1-16", 8-32", 1-8", 5-32", 8-16", 7-32", 1-4',

$$
9-3 .{ }^{\prime \prime}, 5-16^{\prime \prime \prime},
$$

Square or Hexagonal made to order.... 00
Metric, Round: $2 \mathrm{~m} / \mathrm{m}$ to $8 \mathrm{~m} / \mathrm{m}$, varying by $1 \mathrm{~m} / \mathrm{m}: 100$
No. 0 Automatic and No. 1 Wire Feed. SPRING COLLETS.

Round: 3-16", 7-32", 1-4", 9-32", 5-16", 11-32", 3-8", $18-32^{\prime \prime}, 7-16^{\prime \prime}, 10,32^{\prime \prime}, 1-2^{\prime \prime} \cdot . . .!$. $\$ 280$
Square: 1-4", 5-16", 3-8"' ${ }^{\prime \prime}{ }^{\circ}$. 400
Hexagonal: 1-4", $5-16^{\prime \prime}, 3-8^{\prime \prime}, 7-16^{\prime \prime} \cdot . \cdot . \cdot . \cdot 400$ Metric, Round: $6 \mathrm{~m} / \mathrm{m}$ to $12 \mathrm{~m} / \mathrm{m}$, varying by $1 \mathrm{~m} / \mathrm{m}$. 250 FEEDING FINGERS.

Round: 8-16"; $7-32^{\prime \prime}, 1-4^{\prime \prime}, 9-32^{\prime \prime}, 516^{\prime \prime}, 11-32^{\prime \prime}, 8-8^{\prime \prime}$,

Hexagonal: 1-4", 5-16", $3-8^{\prime \prime}, 7-16^{\prime \prime} . \cdot \cdot \cdot \cdot \dot{0} 25$ Metric, Round: $6 \mathrm{~m} / \mathrm{m}$ to $12 \mathrm{~m} / \mathrm{m}$, varying by $1 \mathrm{~m} / \mathrm{m}$ - 150

No. 1 Automatic.

SPRING COLLETS.

Square: 1-4", $5-16^{\prime \prime \prime}, 8^{-88^{\prime \prime}}, 7-16^{\prime \prime \prime} \cdot{ }^{\prime \prime}$. 425

Metric, Round: $6 \mathrm{~m} / \mathrm{m}$ to $16 \mathrm{~m} / \mathrm{m}$, varying by $1 \mathrm{~m} / \mathrm{m}$. 275 FEEDING FINGERS.
 $13-32^{\prime \prime}, 7-16^{\prime \prime}, 15,-32^{\prime \prime}, 1-2^{\prime \prime}, 9-16^{\prime \prime},-58^{\prime \prime}{ }^{3-8^{\prime \prime}}$ • 150

Hexagonal: 1-4", $5-16^{\prime \prime}, 8-8^{\prime \prime}, 7-16^{\prime \prime}, 1.2^{\prime \prime}225$
Metric, Round : $6 \mathrm{~m} / \mathrm{m}$ to $16 \mathrm{~m} / \mathrm{m}$, varying by $1 \mathrm{~m} / \mathrm{m}$: 150
ist continued on next page. Other sizes made to order.

SPRING COLLETS AND FEEDING FINGERS-Continueá.

No. 2 Automatic.

SPRING COLLETS.

Round: 1-4", 9-32", $5-16^{\prime \prime}, 11-32^{\prime \prime}, 3-8^{\prime \prime}, 13-32^{\prime \prime}, 7-16^{\prime \prime}$, Price
 $11-16^{n \prime}, 8-4^{n}, 13-16^{n}, \frac{1}{7}-8^{n}, 150^{\prime}-16^{n}, 1^{n} \bullet 800$
Square: $3-8^{\prime \prime}, 7^{\prime}-16^{\prime \prime}, 1-2^{n}, 9-16^{\prime \prime}, 5-8^{\prime \prime}, 11-11^{\prime \prime}$
Hexagonal: $\begin{gathered}3-8^{n}, 7-16^{n}, \\ 13-16^{n}\end{gathered}, 1 \cdot 2^{n}, 9-16^{j^{n}}, 5-8^{n}, 11-1^{\prime} 6^{n}, 3-4^{n}, 450$
Metric, Round : $10 \mathrm{~m} / \mathrm{m}$ to $25 \mathrm{~m} / \mathrm{m}$, varying by $1 \mathrm{~m} / \mathrm{m}$. 300 FEEDING FINGERS.

Round: 1-4", 9-32", 5-16 $6^{\prime \prime}, 1132^{\prime \prime}, 3-8^{\prime \prime}, 13-32^{n}, 7-16^{\prime \prime}$, $15-32^{\prime \prime}, 1 \cdot 2^{\prime \prime}, 17-32^{\prime \prime}, 9-16^{\prime \prime}, 19-32^{\prime \prime}, 5-8^{n^{2}}$, $11-16^{\prime \prime}, 3-4^{\prime \prime}, 13-16^{\prime \prime}, 7^{\prime}-8^{\prime \prime}, 15-16^{n \prime}, 1^{\prime \prime}$

175
Square: $3-8^{n}, 7.16^{\prime \prime}, 1-2^{\prime \prime}, 9-16^{n}, 5-8^{\prime \prime}, 11-16^{n^{\prime}}$,

$$
250
$$

Hexagonal: $3-8^{7^{\prime}}, 7-16^{\prime \prime}, 1-2^{n}, 9-16^{\prime \prime}, 5-8^{n}, 11-16^{n}, 3-4^{n^{\prime}}$, $13-16^{\prime \prime}$,

250
Metric, Round: $10 \mathrm{~m} / \mathrm{m}$ to $25^{\circ} \mathrm{m} / \mathrm{m}$, varying by $1 \mathrm{~m} / \mathrm{m}$. 1 75

No. 0 Wire Feed.

SPRING COLLETS.
Round : 1-8", $5-32^{\prime \prime}$, 3-16", $7-32^{\prime \prime}, 1-4^{\prime \prime}, 9-32^{\prime \prime}, 5-16^{\prime \prime}$,
Square: 3-16"', 1.4"'
250
400
Hexagonal: 1-4", 5 -16"
400
Metric, Round: $4 \mathrm{~m} / \mathrm{m}$ to $10 \mathrm{~m} / \mathrm{m}$, varying by $1 \dot{\mathrm{~m}} / \mathrm{m}$. ${ }_{2} 50$ FEEDING FINGERS.

Round: 1-8", 5 32", 3-16", 7-32", 1-4", 9-32", 5-16",
Square : 3 -16", $1-4^{\prime \prime}$
1 po 225
Hexagonal: 1.4", $5.16^{\prime \prime}$
${ }^{2} 25$

No. 2 Wire Feed.

SPRIITG COLLETS.
 15-32", 1-2", 17-32"', 9.16", 19-32"', 5-8",

 FEEDING FINGERS.

Round: 1-4", $9.32^{\prime \prime}, 5.16^{\prime \prime}, 11-32^{\prime \prime}, 3-8^{\prime \prime}, 13.32^{\prime \prime}, 7-16^{\prime \prime}$, 15-32", 1-2"' $17^{\prime \prime}-32^{\prime \prime}, 9-16^{\prime \prime}, 1^{\prime \prime} 19-32^{\prime \prime}, 5-8^{\prime \prime}$, 11.16", 3-4"', 13-16", $7^{\prime}-8^{\prime \prime}$

Square: $3-8^{\prime \prime \prime}, 7-16^{\prime \prime \prime}, 1-2^{\prime \prime},{ }^{\prime \prime}$.16
Hexagonal: $3-8^{\prime \prime}, 7-16^{\prime \prime}, 1-2^{\prime \prime}, 9-16^{\prime \prime}, 5.8^{n}, 11-16^{\prime \prime}, 3.4^{\prime \prime} \cdot 250$
Metric, Round : $10 \mathrm{~m} / \mathrm{m}$ to $20 \mathrm{~m} / \mathrm{m}$, varying by $1 \mathrm{~m} / \mathrm{m}$. 175

FLOATING HOLDERS.

For Use on Screw Machines

For Drills, Reamers, Counterbores, \&c.

The holder and shank are separate and after a tool is adjusted central. with the work, the two are clamped together.

No.	No. of Machine where used.	Diam. of Hole for Drill or Bushing.	Depth Hole. Hole	Length of Body.	Diam. Shank.	Length of Shank.	Price.
00	00 Auto.	5 Taper	5.8"	15-16"	$5-8^{\prime \prime}$	$11.8{ }^{\prime}$	\$3 00
10	0 Wire Feed	$1.2 "$	11.16	$29-32$	$5-8$	17.16	300
12)	$\begin{aligned} & 2 \text { Wire Feed } \\ & 2 \text { Plain } \end{aligned}$	\} 1	13 -16	$11-2$	1	21.2	400
14	$4,5 \& 6$ Plain	1	13 3-16	19-16	11.2	$31-4$	450
16	4,5 \& 6 Plain	11.2	$15-8$	$25-32$	$11-2$	$31-4$	500
20	1 Wire Feed 1 Plain 0 Auto.	\} 5.8	13.16	11.8	3-4	2	350
21	1 A uto.	- 3.4	15.16	11.4	1	$13-4$	350
22	2 Auto.	1	13 -16	11.2	1	$13-4$	400

DRILL HOLDERS.

For Use on Screw Machines.

No.	No. of Machine where used.	Diam. of Hole for Drill er Bushing	Depth of Hole.	$\begin{gathered} \text { Length } \\ \text { of } \\ \text { Bods. } \end{gathered}$	$\begin{gathered} \text { Diam. } \\ \text { of } \\ \text { Shank. } \end{gathered}$	$\begin{gathered} \text { Length } \\ \text { or } \\ \text { shank. } \end{gathered}$	Price.
00	00 Anto.	\% Taper	$5.8{ }^{\circ}$	15.16"	5.8'	$11.8^{\prime \prime}$	8175
10	o Wire Feed	1-2"	11.16	1	$5-8$	17.16	200
11 \{	1 Wire Feed 1 Plain	\} 5.8	13.16	11.8	3-4	2	200
12	2 Wire Feed 2 Plain	$\} 1$	13.16	15.8	1	21.2	300
14	$4,5 \& 6$ Plain	1	13.16	13.4	11.2	$311-4$	350
16	4,5 \& 6 Plain	11.2	15.8	21.4	11.2	31.4	400
20	O Auto.	5.8	13.16	17.16	3.4	11.2	200
21	1 Auto.	3.4	15.16	15.16	1	13.4	250
22	2 Auto.	1	13 -16	19.16	1	13.4	300

BOX

TOOLS

For Use on Screw
 Machines.

No.	No. of Mactive where used.	$\begin{aligned} & \text { Dian. } \\ & \text { chat } \\ & \text { chat be } \\ & \text { turned. } \end{aligned}$	$\begin{aligned} & \text { Leaght } \\ & \text { can te } \\ & \text { carmed. } \end{aligned}$	$\begin{aligned} & \text { Leogth } \\ & \text { ooffy. } \end{aligned}$	$\begin{gathered} \text { Diam. } \\ \text { Shaf. } \\ \text { Shank. } \end{gathered}$	$\begin{aligned} & \text { L-agtb } \\ & \text { of } \\ & \text { Shank. } \end{aligned}$	Price.
00	00 Auto.	1-4*	${ }^{\prime \prime}$	$13 \times$	5.8.	$11-$	800
00 B	00 Auto.	14	1	3-4	5.-	13.4	450
10	0 Wire Feell'	3-8	134	23.16	5.8	17.16	1200
11	1 Wire Feed 1 Plain) 1-2	21.4	211-16	3-4	2	1400
12	$\begin{aligned} & 2 \text { Wire Feed } \\ & 2 \text { Plain } \end{aligned}$	3-4	$23-4$	$33-8$	1	$21-2$	1600
13		1	3	334	14	$31-4$	200
14	4 Wire Feed	11.4	41.2	538	11.2	31.4	2200
16	6 Plain	11.2	5	55	$11-2$	31.4	家 00
20	0 A uto.	1-2	13.4	23.16	3.4	$11-2$	1000
20 B	0 A uto.	5-16	13.4	23 -16	$3-4$	11.2	900
21	1 Auto.	1.2	2	258	1	$13-4$	1400
22	2 Auto.	7.8	21.2	3	1	12	1400

POWER FEEDS

For the Turret Slides of Screw Machines.

Power Feeds for the Turret Slides of Nos. 3, 4 and 5 Plain Screw Machines (see pages 140 to 143) and No. 2 Wire Feed Screw Machine (see page 151), are made and applied to machines when required.
Price, Power Feed for No. 2 Wire Fced, \$85 00.
Price, Power Feed for No. 3 Plain, $\$ 5000$.
Price, Power Feed for Nos. 4 or 5 Plain, $\$ 7500$.
Extra Screw Leaders and Nuts for Nos. 3 or 5 Plain Screw Machines, United States or Metric Standard, are made to order.

CENTERING

 AND FACING TOOLS.
For Use on Screw Machines.

No.	No. of Machine where used.	$\begin{gathered} \text { Diam. } \\ \text { of } \\ \text { Drill. } \end{gathered}$	$\begin{gathered} \text { Length } \\ \text { of } \\ \text { Body. } \\ \hline \end{gathered}$	Diam. of Shank.	Length of Shank.	Price.
00	00 Automatic	1-4"	13 -8',	$5-8^{\prime \prime}$	$13.8^{\prime \prime}$	\$400
10	0 Wire Feed	5-16	$19-16$	5-8	1 7-16	700
11)	1 Wire Feed;					
11 ,	1 Plain	\} 3-8	111.16	3-4	2	500
14	$4,5 \& 6$ Plain	$7-8$	$23-4$	11.2	31.4	1200
$22\{$	$\begin{aligned} & 2 \text { Wire Feed; } \\ & 2 \text { Plain; } \\ & 2 \text { Automatic } \\ & 1 \text { Automatic } \end{aligned}$	$\} 5.8$	13.4	1	$23-4$	800

POINTING TOOLS.

For Use on Screw Machines
For Pointing the Ends of Studs, Screws, ec.
The work runs in a bushing and the end is finished by an end cutting tool made the same shape as the point, and can be repeatedly sharpened by grinding without changing its form.
Each tool is provided with blades and bushings, varying by 1-16" between the sizes given in the table.

No.	No. of Machine where used.	Capacity.	$\left\|\begin{array}{c\|} \text { Length } \\ \text { of } \\ \text { Body. } \end{array}\right\|$	Distance Bushing to Tool.	$\begin{gathered} \text { Diam. } \\ \text { of } \\ \text { Shauk. } \end{gathered}$	$\begin{aligned} & \text { Length } \\ & \text { of } \\ & \text { Shank. } \end{aligned}$	Price.
00 B	00 Auto.	3-16"	11-16"	3-16"	$5.8{ }^{\prime \prime}$	13.16	$\$ 500$
00 C	00 Auto.	1.4	$13-16$	5.16	5.8	15.16	550
10	0 Wire Feed	$1-8$ to 3-8	7-8	3.8	$5.8{ }^{\prime \prime}$	$17-16$	1000
11	1 Wire Feed 1 Plain	$3-16$ to 1.2	1	7.16	3-4	2	1200
12	2 Wire Feed 2 Plain	$1-4$ to 3-4	11.4	9.16	1	21.2	1500
16	4, 5 \& 6 Plain	1.2 to 11.8	$11-2$	5.8	11.2	31.4	2200
21	1 Auto.	3-16 to $1.2 \mid$	1	5.16	1	13.4	1200

181

FORMING TOOL HOLDER.

FOR USE

On Front of
Cross-Slides of
Screw Machines.

No.	Machine where used.	Width of Tool.	Thickness of Tool.	Price.
10 A	No. 0 Wire Feed	1 '	1-2"	\$5 00
10 B	No. 0 Wire Feed	11.4	$1-2$	800
11 B	$\left\{\begin{array}{l}\text { No. } 1 \text { Wire Feed; } \\ \text { No. } 1 \text { Plain }\end{array}\right\}$	11.4	$9-16$	1000
11 C	$\left\{\begin{array}{l}\text { No. } 1 \text { Wire Feed; } \\ \text { No. } 1 \text { Plain }\end{array}\right.$	$13-4$	9.16	1000
12 C	$\left\{\begin{array}{l}\text { No. } 2 \text { Wire Feed; } \\ \text { Nos.2, } 45 \text { Plain }\end{array}\right.$	13.4	3.4	1200
12 E	$\left\{\begin{array}{l} \text { No. } 2 \text { Wire Feed; } \\ \text { Nos. 2, } 4 \text { \& } 5 \text { Plain } \end{array}\right\}$	23.4	$3-4$	1200
16 D	No. 6 Plain	21.2	1	1400
16 F	No. 6 Plain	4	1	1400

FORMING TOOL BLANKS.

For Use in Above Tool Holders.

No.	Width.	Thickness.	Length.	Price.
10 A	$1{ }^{10}$	1.2'	$11.2{ }^{\prime \prime}$	\$100
10 B	11.4	1-2	11.2	125
11 B	11.4	9-16	2	125
11 C	13 -4	9-16	2	150
12 C	$13-4$	3-4	$27-16$	150
12 E	23.4	3-4	$27-16$	200
16 D	21.2	1	27.8	${ }_{2}^{200}$
16 F	4	1	27.8	250

CUTTING-OFF TOOL POSTS.

For Thin Blade Tools.

For Use on the Back of Cross-Slides of Screw Machines.

No.	Machine where used.	HeightfromCross Slideto Centreof Spindle.	Prlce.	$\begin{aligned} & \text { For } \\ & \text { Post } \\ & \text { No. } \end{aligned}$	Extra Blades.		Price Each.
					Thickness.	Wdth	
*00	00 Auto	$1^{\prime \prime}$	\$4 00	00	$\begin{aligned} & 1-32^{\prime \prime}, 1-16^{\prime \prime}, \\ & 3-32^{\prime \prime}, 5-64^{\prime \prime}, \end{aligned}$	1-2 ${ }^{\prime \prime}$	\$0 40
10	0 W	19.16	550	$10\}$	$1-16^{\prime \prime}, 3-32^{\prime \prime},$	11.16	40
11 ,	1 Wire Feed; 1 Plain	$\} 21-16$	600	11	$\begin{gathered} 1-16^{\prime \prime}, 3,32^{\prime \prime}, \\ 1-8^{\prime \prime}, \end{gathered}$	13-16	30
12	2 Wire Feed;	, 2	650	12	5-32	13-16	35
12	2 \& 4 Plain		650	\&	3-16"',	13-16	40
16	6	$215-16$	700	16	7-32',	$\begin{aligned} & 13-16 \\ & 13-16 \end{aligned}$	45 50
*20	0 Automatic	$15-16$	500	$20\{$	$1-16^{\prime \prime}, 3-32^{\prime \prime},$	11.16	40
*22	2 Automatic	1 7-16	700	$22\}$	$\left\|\begin{array}{c} 1-8, \\ 1-16^{\prime \prime}, 3-32^{\prime \prime} \\ 1-8^{\prime \prime}, \end{array}\right\|$	$11-16$	40

*In ordering specify whether Front or Rear Post is wanted.

COMBINATION CUTTING-OFF AND KNURLING TOOL POSTS

For Screw Machines.

No.	Machine where used.	$\begin{aligned} & \text { Height from Cross-slide } \\ & \text { to Centre of Spindle. } \\ & \hline \end{aligned}$	Price.
10	No. 0 Wire Feed	$19.16^{\prime \prime}$	\$850
11	$\left\{\begin{array}{l} \text { No. } 1 \text { Wire Feed; } \\ \text { Nos. } 2 \& 4 \text { Plain } \end{array}\right\}$	$21-16$	900
12	$\left\{\begin{array}{l} \text { No. } 2 \text { Wire Feed; } \\ \text { Nos. } 2 \text { \& } 4 \text { Plain } \end{array}\right\}$	by Cog^{2} 2e	950

TAPER TURNING. TOOLS.

For Use on Screw Machines.

These Tools are of advantage in making a large range of work, as taper pins and work of a similar class.

The holders are of steel, have one turning tool, and two back rests, which are operated by a taper guide on the cross slide of the machine. The amount of taper is regulated by the taper on the guide.

When the proper taper is obtained the tool and back rests are withdrawn radially from the work, thus preventing tool marks on the finished product.

The tool and back rests each have separate means of adjustment.

When more abrupt tapers than $1-4$ " to the foot are required, two tools should be used, one for roughing and the other for finishing.

No. of Holder.	Machine where used.	Dimensions of Head.		Dimensions of Shank.		Largst Dia. that can be Turned.	Price.
		Diam.	Length.	Diam.	Length.		
00	00 A uto.	$11.2{ }^{\prime \prime}$	11-4"	$5.8{ }^{\prime \prime}$	$11.2^{\prime \prime}$	5-16"	\$25 00
20	0 Auto.	2	11.2	3-4	2	1.2	2800
22	2 Auto.	21.2	113.16	1	21.4	3-4	2800

Prices do not include Adjustable Guides.

SETS OF TOOLS FOR USE ON SCREW MACHINES.

These Tools are shipped with each machine. If not wanted, please pack carefully and return by express, at our expense. If the whole set is not wanted, those that are kept will be charged for at the prices given with each tool.

No. 0 Wire Feed Screw Machine.

Set of 4 Spring Collets, one each, 1-8", 3-16", 1-4", 5-16"
Set of 4 Feeding Fingers, one each, 1-8 $\mathbf{8}^{\prime \prime}$ 3.16", 1-4", 5-16".
No. 10 Die Holder.
No. 10 Tap Holder.
No. 10 Box Tool.

No. 10 Drill Holder.
No. 10 Floating Holder.
No. 10 Cutting-off Toot Post.
Price, $\$ 3900$.

No. 1 Wire Feed Screw Machine.

Set of 4 Spring Collets, one each, 1-4", 5-16", 3-8", 7-16".
Set of 4 Feeding Fingers, one each, 1-4", 5-16" $3-8^{\prime \prime}, 7-16^{\prime \prime}$.
No. 11 Die Holder.
No. 11 Tap Holder.
No. 11 Box Tool.
. No. 11 Drill Holder.

No. 20 Floating Holder.
No. 1 Roughing Hollow Mill.
No. 11 Finishing Hollow Mili.

Price, $\$ 57$ o.

No. 2 Wire Feed Screw Machine.

Set of 8 Spring Collets, one each, 3-8", 7-16", 1-2", 9.16", $5-8^{\prime \prime}, 11.16^{\prime \prime}, 3-4^{\prime \prime}$ and 13-16".
Set of 8 Feeding Fingers, one each, 3-8", 7-16", 1-2", 9-16", $5.8^{\prime \prime}, 11-16^{\prime \prime}, 3-4^{\prime \prime}$ and $13-16^{\prime \prime}$. No. 12 Drill Holder.
No. 12 Die Holder.
No. 22 Floating Holder.
No. 12 Tap Holder. No. 3 Roughing Hollow Mill.
No. 12 Box Tool. No. 13 Finishing Hollow Mill.
Price, $\$ 7500$.

No. 4 Wire Feed Screw Machine.

No. 14 Die Holder.
No. 14 Tap Holder.
No. 14 Box Tool.
No. 14 Drill Holder.

No. 14 Floating Holder.
No. 6 Roughing Hollow Mill, with 3-4" Blade.
No. 16 Finishing Hollow Mill.
Price, $\$ 6900$.

No. 6 Plain Screw Machine.

8 Sets Chuck Jaws from $3-8^{\prime \prime}$ to capacity of machine.
No. 16 Die Holder.
No. 16 Tap Holder.
No. 16 Box Tool.
No. 16 Drill Holder.

No. 16 Floating Holder.
No. 6 Roughing Hollow Mill, with 3-4" Blade.
No. 16 Finishing Hollow Mill. Price, $\$ 9500$.

TOOLS AND ATTACHMENTS ror

INO. 00 AUTOMATIC SCREW MACHINE, NO. OO AUTOMATIC TURRET FORMING MACHINE.
Price.

TOOLS AND ATTACHMENTS
for
Ho. O AUTOMATIC SCREW MACHINE,
NO. O AUTOMATIC TURRET FORMING MACHINE. No. O AUTOMATIC CUTTLIGG-OFF MACHINE.
Price.
Back Rest for Turret, $\$ 550$
Box Tool, No. 20, 1000
Box Tool for Special Work, $\$ 1000$ to 2200
Box Tool, No. 20B, 900
Cams, Set complete, 00
Cams, Set of Blanks, bored and turned, Mild Steel, 150
Centering and Facing Tool, 500
Cutting-off and Forming Tools, Circular, . 400 to 1000
Cutting-off and Forming Tool Blanks, Circular, 60
Cutting-off Tool Posts, No. 20, for Thin Blade Tools, 500
Cutting-off Tools, Thin Blades for Posts, 40
Die Holder, No. 20, 500
Die Holder, Opening, 3000
Dle Holder, No. 20B, Releasing, 600
Dies, $1-2$ dozen, one size, 600
Drill Holder, 200
Drill Holder Bushings for Drills and Taps, 100
Drill Holder Bushing Blanks, 20
Drilling Attachment for Drill Tap or Die, 2800
Drilling Attachment with 1 Spinđe. 1800
Drilling Attachment with 2 Spindles. 2600
Feeding Fingers, Round, any size, 150
Feeding Fingers, Square or Hexagonal, any size, 225
Feed Tube for 1-2" stock, 600
Feed Tube for $9.16^{\prime \prime}$ stock, for Brass only, 750
Feed Tube and Finger, one plece, 900
Floating Holder for Drills, Taps, or Counterbores, 350
Hollow Mills, any size within capacity of machine, 175
Hollow Mill Blanks, 25
K nurl Holder for Turret, 1200
Knurl Holder for Cross-Slide, side, 400
Knurl Holder for Cross-Slide, top, 600
Oiling Arrangement for Turret Tools, 1200
Pointing Tool Holder for Turret for Circular Tools, 800
Pointing Tool, Circular, Blanks, 25
Spring Collets, Round, any size, 250
Spring Collets, Square or Hexagonal, any size, 400
Stock Stop for Turret, 25
Tap Holder, No. 20, 450
Taps, 1-2 dozen, one size, 400
*Taper Turning Tool, 2800
Taper Turning Tool, Adjustable Guide for, 600

TOOLS AND ATTACHMENTS

FOR
No. 1 AUTOMATIC SCREW MACHINE, No. 1 AUTOMATIO TURRET FORMING MACHINE,

No. 1 AUTOMATIC CUTTING-OFF MACHINE.

Price.
Back Rest for Tarret, $\$ 600$
Box Tool, No. 21, 1400
Box Tool, for Special Work, $\$ 1000$ to 1800
Cams, Set complete, 400 to 1500
Cams, Set of Blanks, bored and turned, Cast Iron, 150
Cams, Set of Blanks, bored and turned, Mild Steel, 200
Centering and Facing Tool, 800
Cutting-off and Forming Tools, Circular, $\$ 300$ to 800
Cutting off and Forming Tool Blanks, Circular, 3-8" to $7-8^{\prime \prime}$ thick, 100
Cutting-off Tool Posts for Thin Blade Tools, 700
Cutting.off Tools, Thin Blades for Posts, 1.16", $3.32^{\prime \prime}, 1-8^{\prime \prime}$ thick, 40
Die Holder, No. 21, 600
Dic Holder, Opening, 3000
Dies, $1-2$ dozen, one size, 600
Drill Holder, 250
Drill Holder Bushings for Drills and Taps, 100
Drill Holder Bushing Blanks, 30
Drill Holder with Drill Chucks, 600
Drill Holder with Guide Bushings, 1200
Drilling Attachment with 1 Spindle, 2200
Drilling Attachment with 2 Spindles, 3300
Drilling Attachment for Drill, Tap or Die, 3500
Feeding Fingers, Round, any size, 150
Feeding Fingers, Square or Hexagonal, any size, 225
Feed Tube for $3-4$ " stock (for brass only), 1000
Floating Holder, for Drills, Taps, Counterbores, Reamers, \&c., 350
Floating Holder with Drill Chucks, 900
Hollow Mills, any size, 200
Hollow Mill Blanks, 40
Knurl Holder for Turret, 1500
Knurl Holder for Cross-Slide, 500
Oiling Arrangement for Turret Tools, 1500
Pointing Tool for Turret, No. 21, Straight, 6 Blades, 1200
Pointing Tool Holder for Turret for Circular Tools, 800
Pointing Tool, Circular, 250
Spring Collets, Round, any size, 275
Spring Collets, Square or Hexagonal, any size, 425
Stock Stop for Turret, 30
Tap Holder, No. 21, 500
Taps, 1-2 dozen, one size, 400

TOOLS AND ATTACHMENTS FOR

Price.
Back Rest, Adjustable V, \$6 00
Box Tool, No. 22, 1400
Box Tool, Special, $\$ 1400$ to 2500
Cams, Set complete, 400 to 2000
(Jams, Set of Blanks, bored and turned, Cast Iron, . 150
Cams, Set of Blanks, bored and turned, Mild Steel, 250
Centering and Facing Tool, 800
Cutting-off and Forming Tools, Circular, . \$300 to 2500
Cutting-off and Forming Tool Blanks, Circular, 3-8" to $34^{\prime \prime}$ thick,

100
$\begin{array}{ll}\text { Cutting-off and Forming Tooi Blanks, Circular, 7-8 } \\ \text { to } 114^{\prime \prime} \text { thick, } & 150\end{array}$
Cutting-off Tool Posts, No. 22, for Thin Blade Tools, $\quad 700$
Cutting-off. Tools, Thin Blades for Posts, . . . 40
Die Holder, No. 22, 600
Die Holder, Opening, 8000
Die Holder, Opening, Set of Chasers for, . . 150
Die Holder, No. 22 13, Releasing, 800
Dies, $1-2$ dozen, one size, 600
Drill Holder, 800
Drill Holder Bushings for Drills and Taps, . . 100
Drill Holder Bushings, Blanks, $\mathbf{3 0}$
Drilling Attachment with 1 Spindle, 2200
Drilling Attachment with 2 Spindles, 3300
Drilling Attachment for Drill, Tap or Die, . . 3500
Feeding Fingers, Round, any size, 175
Feeding Fingers, Square or Hexagonal, any size, . 250
Floating Holder for Drills, Taps or Counterbores, . 400
Hollow Mills, any size, 200
Hollow Mill Blanhs, 40
Knurl Holder for Turret, 1500
Knurl Holder for Cross.Slide, side, 500
Knurl Holder for Cross-slide, top, 800
Oiling Arrangement for Turret Tools, . . . 1500
Pointing Tool for Turret, Straisht, 6 Blades, . 1500
Pointing Tool Holder for Turret for Circular Tools, - 1000
Pointing Tool, Circular, 250
Spring Collets, Round, any size, 800
Spring Collets, Square or Hexagonal, any size, - 450
Stock Stop for Turret, • $\mathbf{3 0}$
Tap Holder, No. 22, 500
Tap Holder, No. 22 B, Releasing, 700
Taps, $1-2$ dozen, any size, 400
*Taper Turning Tool, $. \quad . \quad . \quad . \quad 2800$
Taper Turning Tool, Adjustable Guide for, : $\quad 750$
*Price does not include Adjustable Guide.

SCREW SLOTTING ATTACHMENTS

For Nos. 00, 0 and 2 Automatic Screw Machines.

This attachment will take screws as they are left by the machine and slot them automatically, thus doing away with an extra machine for slotting and wholly completing the screw on one machine in practically the same time that is required to complete the screw without slotting.
The saw is mounted on a slide and driven by a round belt from the overhead works. It can be adjusted for the depth of cut by means of a screw on the back of the slide.

The screws are held in a bushing carried in a foating holder mounted in an adjustable swinging arm. It is operated ly cams that are adjustable on the shaft and provide for slotting almost any screw within the capacity of the machine.

After the attachment is properly adjusted the arm will, usually, need no further adjustment for different widths of slots, except that oltained by the screw bearing against the stop.

Usually it is more satisfactory to have the attachment nited to the machine before it is shipped.

Prices, Attachment fitted to the Machine. . For No. 00 Machinc, \$ for No. 0 Machine, $\$$
for No. 2 Machine. ${ }^{\text {P }}$

No. 1 26 in. $\times 12$ in. VERTICAL CHUCKING MACHINE.

This machine takes work to $26^{\prime \prime}$ in diameter with $12^{\prime \prime}$ face, or to $28^{\prime \prime}$ in diameter with $11^{\prime \prime}$ face, and bores a hole to $11^{\prime \prime}$ in depth.

No. 1

26 in. $x 12$ in.

VERTICAL CHUCKING MACHINE.

The Chuck Table is revolved by a bevel gear and pinion driven by a cone pulley having 5 steps for $21.2^{\prime \prime}$ belt, giving, with 2 speeds on counter, 10 changes of speed. It is provided with 3 slides having T slots $5.8^{\prime \prime}$ wide, graduated on top to aid the operator in placing the jaws equally distant from centre. When adjusted the jaws can be tightened or loosened by a wrench as in the case of a universal chuck. In addition to the T slots in slides there are 3 others, $5-8^{\prime \prime}$ wide. It has a hole 2 1-4" In diameter leading to the pan for collecting chips.
A Brake that can be applied by the foot of the operator is used to stop the table quickly.
The Turret has 5 holes $-11.2^{\prime \prime}$ in diameter and can be clamped in position. Distance from centre, of holes to slide 2". An adjustable dog withdraws the locking pin at any part of the upward movement of slide.

The Turret Slide has an automatic feed of $16^{\prime \prime}$, driven by a triction disk and can be quickly changed from 0 to $.049^{\prime \prime}$ to one revolution of table. In addition to the regular hand feed, a find hand feed, which can be engaged by a friction clutch, 18 provided. The greatest distance from end of slide to top of table is $233.8^{\prime \prime}$, the least, $73.8^{\prime \prime}$. The slide is counterbalanced by a weight inside of column and has a quick hand return movement.

The End of the Upright is $141.8^{\prime \prime}$ from top of table.
The machine bores a hole $11^{\prime \prime}$ deep in work to $26^{\prime \prime}$ in dlam. eter with $12^{\prime \prime}$ face, or $28^{\prime \prime}$ in diameter with $11^{\prime \prime}$ face.
The Counter-shaft has two friction pulleys $14^{\prime \prime}$ and $16^{\prime \prime}$ in diameter for $31 \cdot 2^{\prime \prime}$ and $4^{\prime \prime}$ belts and should run about 350 and 125 revolutions per minute.

Weight of machine ready for shipment, about 3675 lbs .
Net Weight, about 3000 Ibs
Floor Space, $28^{\prime \prime} \times 63^{\prime \prime}$.
Dimensions of box in which machine is shipped, 69" $\times 9^{\prime \prime}$ < $78^{\prime \prime}$.
Price includes 2 sets of jaws, and everything else shown In cut, together with overhead works, boxed and delivered f. o. b. at Providence, R. I.

Price, $\$$
Set of Tools for 1 8-8" hole, Price,

192

No. 2

36 in. $\times 141-2$ in. VERTICAL CHUCKING MACHINE.

This machine takes work to $36^{\prime \prime}$ in diameter with $141-2^{\prime \prime}$ face, and bores a hole to $141-2^{\prime \prime}$ in lepth.

No. 2

36 in. $x 14$ 1-2 in.

VERTICAL CHUCKING MACHINE.

Abstract

The Chuck Table is revolved by a bevel gear and pinion driven by a cone pulley having 5 steps for $3^{\prime \prime}$ belt, giving, with 2 speeds on counter, 8 changes of speed. It is provided with 3 slides, having T slots $3-4^{\prime \prime}$ wide, graduated on top to aid the operator in placing the jaws equally distant from centre. When adjusted the jaws can be tightened or loosened by a wrench as in the case of a universal chuck. In addition to the T slots in slides there are 8 others, $8-\AA^{\prime \prime}$ wide. It has a hole 3 1-2" in diameter leading to the pan for collecting chips.

Δ Brake that can be applied by the foot of the operator is used to quickly stop the table.
The Turret has 5 holes $134^{\prime \prime}$ in diameter and can be clamped in position. Distance from centre of holes to slide, 2 1-4'. An adjustable dog withdraws the locking pin af any part of the upward movement of slide.
The Turret Slide has an automatic feed of 19 1-2", driven by a friction disk and can be quickly changed from 0 to .056 " to one revolution of table. A fine hand feed, which can be engaged by a friction clutch, is also provided. Greatest distance from end of slide to top of table, $3214^{\prime \prime}$; least, 12 3-4". The slide is counter-balanced by a weight inside of column and has a quick hand return movement.

The End of the Upright is $17^{\prime \prime}$ from top of table.
A Tool Guide, for the purpose of supporting tools in makIng heavy cuts, is furnished with the machine.

The machine bores a hole 14 1-2" deep in work to $33^{\prime \prime}$ in diameter with a 14 1-2" face.

The Counter-shaft has 2 friction pulleys $16^{\prime \prime}$ and $18^{\prime \prime}$ in diameter for $4^{\prime \prime}$ and $41.2^{\prime \prime}$ belts and should run about 210 and 105 revolutions per minute.
Weight of machine ready for shipment, about 5585 lbs.
Net Weight, about 4591 lbs.
Floor Space, 36" x 78".
Dimensions of boxes in which machine is shipped, $88^{\prime \prime} \times 41^{\prime \prime}$ $x 35^{\prime \prime}$ and $577^{\prime \prime} \times 36^{\prime \prime} \times 65^{\prime \prime}$.
Price includes 2 sets of jaws, and everything else shown in cut, together with overhead works, boxed and delivered f. o. b. at Providence, R. I.

Price, $\$$
Set of Tools for 1 15-16" hole. Price, \$
Set of Tools for 1 14" hole. Price,

$133-8$ in, x 8 in.

 HORIZONTAL CHUCKING MACHINE.

 HORIZONTAL CHUCKING MACHINE.}

Back Geared.

Patented October 15, 1889; May 23, 1893; July 24, 1894.

This machine swings $133-8^{\prime \prime}$ over bed and bores a hole to $8^{\prime \prime}$ in depth. Greatest distance between turret and end of spindle, $21^{\prime \prime}$.

13 3-8 in. x 8 in.

HORIZONTAL CHUCKING MACHINE.

The Spindle is of steel; the bearings are hardened, ground and lapped and run in phosphor bronze hoves. The front box is provided with means of compensation for wear. The thrust is taken at rear end of spindle; the bearing parts are of hardened steel and phosphor bronze.

The Hole through spindle is $\mathbf{1 9 - 1 6 "}$ in diameter.
The Cone has 3 steps for $3^{\prime \prime}$ belt and is back geared. The back gears are under spindle and, together with the gears on cone, are enclosed. These gears run continuously and are enfaged or disengaged by a clutch, operated by a lever on the front of the machine.
The Turret has 7 holes $112^{\prime \prime}$ in diameter and ran be clamped in position. Distance from centre of holes to top of slide, $23.4^{\prime \prime}$. Greatest distance between turret and end of spindle, $21^{\prime \prime}$.

The Feed of turret slide is automatic, and has 8 changes, varying fiom $.0: 5^{\prime \prime}$ to $.030^{\prime \prime}$ to one cevolution of spindle. The feed cones have 4 steps, and by operating a lever each of the four speeds of cones can be made fast or slow, without changing the belt.

Swing over bed, 13 3-8". Depth that can be drilled, $8^{\prime \prime}$.
The Tank Table has a reservoir cast in the hottom, provid. ing for the collection of the strained oil.
The Counter-shaft has 2 friction pullevs, $14^{\prime \prime}$ in diameter for $31-2^{\prime \prime}$ belts, and should run about $17 \overline{5}$ revolutions per minute.

Weight of machine ready for domestic shipment, about 2250 llos.
Weight of machine ready for foreign shipment, about 2400 ll s.
Net Weight, about 1850 lbs .
Floor Space $30^{\prime \prime} \times 86^{\prime \prime}$.
Dimensions of loxes in which machine is shipped, $74^{\prime \prime} \times 28^{\prime \prime}$ $\times 32^{\prime \prime}$ and $75^{\prime \prime} \times 26^{\prime \prime} \times 20^{\prime \prime}$.
Price includes everything shown in cut, together with orerhead works boxed and delivered f.o.b. at Providence, R. I.

Price, \$
An Oil Pump, pipes, etc., are furnished when desired.
Price, \$

196

9 Inch UNIVERSAL HAND LATHE.

This lathe swings $9^{\prime \prime}$ over bed and takes $141-2^{\prime \prime}$ between centres.

9 Inch

UNIVERSAL HAND LATHE.
 With or Without Brake.

The Spindle is of steel, hardened, ground and lapped. The boxes are of bronze, and the front box has means of com. pensation for wear. The thrust is taken at rear end of spindle; the bearing parts are hardened and ground. It has a hole 1-2" in diameter its entire length. The front end has a special taper hole, and a collet, having this taper on the outside and a No. 8 taper hole inside, is furnished with each lathe.

A 1-4' Self-Adjusting Shell Chuck is sent with each machine. It is made the same taper as the hole in spindle and at the outer end is longitudinally split into three parts. A spring under a sleeve draws the chuck back finto spindle and closes it on the work; the sleeve is free to move under the action of the spring and is connected with the chuck by a screw. The upper end of a forked lever spans the sleeve and the lower end is carried under the table and is operated by the knee of the workman.

Tne Foot-stock Spindle is operated by a hand lever and can be securely fastened by a clamp screw. It has No. 3 taper hole.

The Tool Holder and guides provide for the making of small studs, screws, etc., either straight or taper, in duplicate.

The Lathe swings over bed, $9^{\prime \prime}$; over tool rest, $53-4^{\prime \prime}$, and takes 14 1-2" between centres.

The Counter-Shaft has tight and loose pulleys $6^{\prime \prime}$ in diame. ter for $2^{\prime \prime}$ belt, and should run about 300 revolutions per minute.

Weight of Lathe ready for domestic shipment, about 500 Ibs; for foreign shipment, about 650 lbs .

Net Weight, about 425 Jbs .
Floor Space, 25 " $x 53^{\prime \prime}$.
Dimensions of box in which machine is shipped, $49^{\prime} \times 26^{\prime \prime}$工26".
Price includes 1-4" shell chuck, collet for head-stock spindle, tool holder, face plate, tool rest, wrenches, etc., and overhead works, boxed and delivered f. o. b. at Providence, R.I.

Price $\$$
A Slide Rest, $\$$, and a Centre Rest, $\$$ are furnished when desired.

Shell Chucks from $1-16^{\prime \prime \prime}$ to $3-8^{\prime \prime}$ inclusive, varying by 32nds of an inch, are kept in stock. Price, each, $\$$ Intermediate sizes, as well as chucks holding disks, are made to order. Chucks are interchangeable with Screw Polishing and Finishing Machines.

This Lathe furrished fitted with brake similar to Polishing and Finishing Machine when desired. Price, \$

Low Tables, fitted for two lathes, furnished when desired.
Price, $\$$ Extra.

SCREW SLOTTING MACHINE.

This machine slots screws to $5-8^{\prime \prime}$ in diameter, $81-2^{\prime \prime}$ in length.

SCREW SLOTTING MACHINE.

The Spindle runs in bronze boxes provided with means of compensation for wear. It is hollow and has a No. 7 taper hole. Arbors are held by a bolt passing through rear end of spindle. A guard is placed over front end of spindle.

The Cone has 2 steps for $21-4^{\prime \prime}$ belt.
The Jaws are fitted to receive hardened steel split bushings admitting studs and screws to $5-8^{\prime \prime}$ in diameter and $81-2^{\prime \prime}$ in length to be slotted.

The Table is $36^{\prime \prime}$ long, $9^{\prime \prime}$ wide, and placed on short legs 80 that the operator can sit whlle at work. . .

The Machine is Operated by moving the lever horizontally to open the jaws for inserting the studs and screws and then downward to bring them against the cutter which is kept in motion. A stop screw governs the depth of slot.

The Counter-shaft has tight and loose pulleys $6^{\prime \prime}$ in diameter for $23-4^{\prime \prime}$ belt and should run about 160 revolutions per minute.

Weight of machine ready for domestic shipment, about 440 lbs.
Weight of machine ready for forelgn shipment, about 500 tbs.
Fet Weight, about 375 lbs.
Floor Space, $28^{\prime \prime} \times 40^{\prime \prime}$.
Dimensions of box in which machine is shipped, $48^{\prime \prime} \times \mathbf{2 8 "}^{\prime \prime}$ $\times 20^{\prime \prime}$.
Price includes 1-2" bushing for jaws, $1^{\prime \prime}$ cutter arbor, No. 12 Screw Slotting Cutter, wrenches and overhead worka, boxed and delivered f. o.b. at Providence, R. I.

Price,
Cutter Arbors made to order.
Hardened steel split bushings made to order. In ordering state diameter of screw to be slotted in thousa ndths of an inch, or if gauge numbers are used, specify the gauge.

For Screw Slotting Cutters, see page 242.

SCREW SLOTTING DEVICE.

The above cut illustratesa Screw Slotting Device that can be attached to a Hand Lathe, and the Device can be quickly and easily operated.
The Jaws are fitted to receive hardened steel split bushings adinitting studs and screws to $5.8^{\prime \prime}$ in diameter. Greatest distance from top of bushing in jaw to top of knee, 3 3-4".

The Device is Used by clamping the knee Λ to bed of Hand Lathe by a bolt, the lever projecting in front at right angles with bed. An arbor carrying a Screw Slotting Cutter is held between the centres of Lathe. The lever is moved horizontally to open the jaws for inserting the studs and screws and then downward to bring them against the cutter which is kept in motion. The stop screw B governs the depth of slot. The working part of the Device can be raised or lowered on the knee and clamped by means of bolt, C.

Price includes 1-2" bushing for jaws, $1^{\prime \prime}$ screw slotting cutter arbor, No. 12 screw slotting cutter, and wrenches.

Price, $\$ 1500$.
Hardened Steel Split Bushings made to order. In order. ing state diameter of screw to be slotted in thousandths of an inch, or if gauge numbers are used, specify the gauge.

For screw Slotting Cutters see page 242.

IMPROVED BENCH CENTRES.

8 in. $\mathbf{x} 3$ in.

These Centres swing $8^{\prime \prime}$ in diameter and take $36^{\prime \prime}$ in length.
The Head and Foot-stock Spindles are of steel, hardened, ground and accurately fitted. The foot-stock centre is held firmly in contact with the work by a stiff spring, and, as the mpindle is quickly operated by a lever, work can be easily placed in position and removed. Provision is made for clamping the foot-stock spindle when desired.

The Indicator is supported by a sliding rest, which is ad. justable longitudinally on the bed. The sleeve which carries the arm can be clamped at any height on the post, or turned round the post to bring the arm on either side. The arm turns in the sleeve and may be set at any angle relative to the base, or may be inverted so that the point brought in contact with the work will be over instead of under the work. The movement of this point is magnified a number of times by the length of the index finger. Provision is made for adjusting the finger to zero and for compensation for wear of the points of the pins upon which the finger swings. The graduations read to thousandths of an inch. The Indicator can also be furnished to read to $1-50$ th of a mm .
Δ Work Support is furnished.
All the parts are movable on the bed and are clamped in position by screws provided with fixed handles, thus dis pensing with wrenches.

Weight, ready for shipment, about 195 lbs.
Net Weight, about 100 lls .
Dimensions of box for shipment, $544^{\prime \prime} \times 12^{\prime \prime} \times 13^{\prime \prime}$.
Price, $\$$
Price, without Indicator, \$

SELF-OILING HANGERS.

The above cut represents a Hanger which is provided with a receptacle for oil for the purpose of lubricationg the bearings, the oil being fed to the same by capillary attraction. This hanger is made with or without arms and with one end of the drip closed or both ends open. Light hangers can be furnished with $1^{\prime \prime}$ x $4^{\prime \prime}$ or $11^{\prime \prime} \times 41.2^{\prime \prime}$ boxes.
Heavy hangers with $11.2^{\prime \prime} \times 6^{\prime \prime}$, or $15-8^{\prime \prime} \times 61.2^{\prime \prime}$ loxes.
 $10^{\prime \prime}$ boxes.

LIGHT.

Drop.	Distance from centre of Shaft to Shipper Rod. A	Extreme Width. B	Distance between Centres of Bolt Holes C	Diameter of Holes.	Single Hanger.	Pair nf Hangers.
$10^{\prime \prime}$	No arm.	$16^{\prime \prime}$	$121.8{ }^{\prime \prime}$	3-4"	8175	
10	"A"三 ${ }^{\text {¢ }}$, 9-16"	6	121.8	3.4	+1 200	
10	" A " $=85.16$	"	"	"	200 200	8410 400
12	No arm.	"	"	،	175	
12	" A "'=79.16	'6	6	"	200	400
12	$" A "=85.16$	"	"	"	200	400
12	" A "'=9 7-16	"	"	"	200	400
12	" A " $=109.16$	،	6	"	200	400
16	No arm.	'6	"	"	200	40
16	" A " $=7$ 9-16	'6	"	،	225	
16	$" A "=85.16$	"	"	"	225	450 450
16	"A" = 97.16	-	"	"	225	450 450
17	No arm.	،	،	"	200	450
18	No arm.	"		这	200	

SELF-OILING HANGERS.

Heavy.

Drop.	Distance from Centre of Shaft to Shipper Rod. A	$\left.\begin{gathered} \text { Extreme } \\ \text { Width. } \\ B \end{gathered} \right\rvert\,$	Distance between Ceutres of Bolt Holes. C	Diam. of Holes.	Single Ilangers	Pair of Hangers
$12 \cdot$	No armı.	$16^{\prime \prime}$	$121.8^{\prime \prime}$	$7{ }^{\prime \prime}$	3275	
12	97.16	"	"	"	300	8600
12	11 5-16	"	"	"	300	600
12	9 7-16 \& 117.16	"	"	'6	300	600
12	11 5-16 \& 13 1-16	"	"	'6	300	600
16	No arm.	"	"	"	300	
16	$97-16$	"	'6	"	32.5	650
16	111.16	* 6	،	"	325	650
16	111.16 \& 131.16	'	،	"	325	650

Extra Heavy.

Two Shipper Rod Stops, one Shipper Dog, and two Belt Guides, accompany each pair of Hangers with Arms.
Special Discount given when ordered in large lots.
Descriptive Circular mailed on application.

COUNTER-SHAFTS

With Friction Pulleys and Hangers with SelfOiling Boxes.

These Counter-Shafts are for driving Milling Machines Screw Machines, Lathes, etc.
The price includes the Shaft, one pair of Patent Self.OilIng Friction Pulleys, page 206. Hangers with self-oiling boxes, page 204. Shipper Rod, Forks and Stops, and a Stud for attaching Shipper Handle.

With Friction Pulleys. Diameter.	Length of Shaft in Clear bet. Hangers.	Diameter of Shaft.	Diameter of Bearing.	Price.
$8^{\prime \prime}$	$26^{\prime \prime}$	11.4 "	$1{ }^{\prime \prime}$	\$1500
10	33	11.4	1	1900
12.	33	11.2	11.4	2200
14	33	11.2	11.4	2400
16	44	111.16	11.2	3000
18	44	$111-16$	11.2	3400

BELF-OILING FRICTION PULLEYS.

Patented May 19, 1885.

We have in our works a large number of these pulleys. They are simple in construction gand noiseless when in use. Friction is applied is the most effective manner, as the pads act directly on the rims of the pulleys. The centre oil pocket is an important feature. All the parts are easily adjusted to compensate for wear.
Each pair of pulleys has one thimble and two collars; each single pulley has one thimble and one collar.

Price List of Pulleys Carried in Stock.

Diam.	Belt.	Hole.	Price per Pair.	Price Each.
$8{ }^{\prime \prime}$	2 1:4"	$11.4{ }^{\prime \prime}$	\$9 00	\$500
10	3	11.4	1300	700
12	31.2	11.2	1500	800
14	$31-2$	11.2	1700	900
16	4	111.16	2000	1050
18	41.2	111.16	2400	1250

Space on Shaft required to Operate Friction Pulleys.

Mani. of Pulley.	Single Pulleg.	Pair of Pullega.
$8^{\prime \prime}$	$9{ }^{7}-8^{\prime \prime}$	15 8.4"
10	117.8	1984
12	135.16	21 11-16
14	$135-8$	2288
18	14 1-2	24
18	15	25

Highest speed at which these Pulleys can satisfactorily be run.

SELF-OILING FRICTION PULLEYS.

Design of $\mathbf{1 8} 95$.

These pulleys are designed for high speed and hard service, and are furnished with our Wire Feed Screw Machines.
The puiley runs on the hub of the inner friction surface, and 18 provided with a ring oiler, which amply lubricates the bearing when the pulley is running idle.

Each pair of pulleys and each single pulley is furnished with one thimble.

Dia.	Belt.	Size of Hole.	Weight.	$\begin{aligned} & \text { Price } \\ & \text { Single } \\ & \text { Pulley. } \end{aligned}$	Prico per Palif.
8'	$21.2{ }^{\prime \prime}$	$11.4{ }^{\prime \prime}$ or $11.2^{\prime \prime}$	23 lbs.	\$800	\$15 00
10	3	11.2 or $111-16$	$37 \mathrm{lds}$.	1000	1900
12	31.2	11.2 or 115.16	59 libs.	1200	2300
14	4	111.16 or 115.16	74 liss.	1400	2700
16	41.2	111.16 or 23.16	93 lbs .	1600	3100

Space on Shaft Required to Operate Friction Pulleys.

Diameter.	Single Pulley.	Two Pullers.	Three Pulleys.
8°	$11{ }^{\prime \prime}$	$19{ }^{\prime \prime}$	37 1.4"
10	111.2	20	8834
12	$\begin{array}{ll}18 & 1.2 \\ 14 & 1.4\end{array}$	${ }_{25}^{231-2}$	
14	141.4 161.4	2514	471.2 53

Pulleys with special holes furnished when desired.
Price, single pulley, $\$ 100$ extra. Two or more palleys, 75 cents each, extra.
It is often desirable to run the spindle of a Screw Machine at different speeds in the same direction; for this purpose we make a special pulley with long levers and special thimble. Three pulleys can thus be operated with one shipper rod.

* For price of Special Pulley and Thimble, add \$100 to the pricis given in above list.

CASE HARDENING

AND ANNEALING FURNACES.

No. 2 Furnace-Double.

This Furnace is made in two sizes and designed for either Case Hardening or Annealing.

The No. 1 Furnace, consumes about 100 lbs. of Lehigh egg coal in 24 hours.

The No. 2 Furnace consumes about 150 lbs. of Lehigh egg coal in 24 hours.

CASE HARDENING AND ANNEALING FURNACES.

These Furnaces may be used either for annealing or case hardenin:-

Frequently a furnace is used for case hardening during the day, and the heat utilized by using it as an annealing furnace at night.

CONSTRUCTION.

The Outside Casing consists of cast iron plates that are bolted together aud also fastened by tie rods that extend tbrough the brick work longitudinally and transversely. The front plates serve as guides for the doors, which are balanced by weights at the back of the furnace, and raised perpendicularly.
The Doors of the Nos. 1 and 2 Furnaces are about 24 inches from the floor for convenience in handling the small packing boxes ordinarily used in these furnaces. The doors of the No. 4 Furnace swing on hinges. To facilitate handling large packing boxes the doors of Nos. 3 and 4 Furnaces are on a line with the floor. The small "peep hole covers," shown on the oven doors, cover the openings through which, without loss of heat, the interior of the oven may be seen.
Interior. An arch in the interior of the furnace extends over the fre box and oven, which are separated by a bridge wall that rises ncarly to the arch. Through the space above this wall the flame from the fire box is forced by the blast, and the gases escape through small outlets at the corners of the ovens to the flues below. These flues are, for the Nos. 1 and 2 Furnaces, $7^{\prime \prime} \times 7^{\prime \prime}$; for the No. 3 Furnace, $6^{\prime \prime} \times 8^{\prime \prime}$, and for the No. 4 Furnace, $10^{\prime \prime} \times 10^{\prime \prime}$ inside measurements, and are fitted with a damper, which is opened or closed from the front of the furnace.

The Walls of the furnace are built of red brick and lined with fire brick. The arch is built of fire brick. The doors are lined with tile and the oven floors are also tile.

For Dimensions and Prices, see page 213.

CASE HARDENING

AND ANNEALING FURNACES.

No. 3 Furnace-DuUble.
This furnace is made in two sizes and designed for either Case Hardening or Annealing large work.

The No. 3 Furnace consumes about 375 lbs. of Lehigh egg coal in 24 hours.

The No. 4 Furnace consumes about 700 lbs. of Lehigh egg coal in 24 hours.

DIMENSIONS OF CASE HARDENING AND ANNEALING FURNACES.

	No. 1.	No. 2.	No. 3.	No. 4.
Size of Oven,	$\left\lvert\, \begin{gathered} 36^{\prime \prime} \times 11^{\prime \prime} \\ \times 10^{n} \end{gathered}\right.$	$\begin{aligned} & 51^{\prime \prime} \times 9^{-\prime \prime} \\ & \times 13^{\prime \prime} \end{aligned}$	$\begin{gathered} 58^{\prime \prime} \times 344^{\prime \prime} \\ \times 22^{\prime \prime} \end{gathered}$	$\begin{array}{r} 63^{\prime \prime} \times 48^{\circ \prime} \\ \times 20^{\circ} \end{array}$
Floor Space, Single Oven,	$\left\|\begin{array}{c} 755^{\prime \prime} \times 55^{\prime \prime} \\ \times 87^{\prime \prime} \end{array}\right\|$	$\begin{array}{\|c} 99^{\prime \prime} \times 89^{\prime \prime} \\ \times 108^{\prime \prime} \end{array}$	$\begin{gathered} 98^{\prime \prime} \times 89^{\prime \prime} \\ \times 96^{\prime \prime} \end{gathered}$	$\begin{gathered} 120^{\prime \prime} \mathrm{x} \\ 108^{\prime \prime} \times 90^{\prime \prime} \end{gathered}$
Floor Space, Double Oven,		$\left\|\begin{array}{c} 99^{\prime \prime} \times 146^{\prime \prime} \\ \times 108^{\prime \prime} \end{array}\right\|$	$\left\lvert\, \begin{gathered} 98^{n} \times 165^{n} \\ \times 96^{\prime \prime} \end{gathered}\right.$	$\begin{gathered} 120^{\prime \prime} \mathrm{x} \\ 204^{\prime \prime} \mathrm{x} 96^{\prime \prime} \end{gathered}$
Single Furnace, Wght. ready for shipment,	Domestic, 2950 lbs.	Domestic, 4715 lbs.	Domestic, 5245 lbs	Domestio, 035 lbs.
Iron work fitted for erection, about	$\begin{array}{\|} \text { Yoreign, } \\ \text { 3100 lbs. } \end{array}$	Foreign, 5190 lbs.	$52 y 51 b 8$. 5375 fbs.	Forein, 8050 lbg ,
Single Furnace, Wght. ready for shipment, Iron work fitted for crection, with Spe. cial Tiles, about	Domestic, 3300 lbs. Foretgn, 3470 libs.	Domestic, 5430 liss. Foreign, 5900 lbs. \qquad	Domestic, 6390 lise. Foreign, 6470 libs.	$\begin{aligned} & \text { Domenth, } \\ & \text { D340 libs } \\ & \text { Foreskn, } \\ & \text { 9355 } \end{aligned}$
Double Furnace, Wgt. ready for shipment, Iron work fitted for erection, about		Domestic, 7690 lbs. Foreign, 7965 lbs.	Domestic, 9450 lits. Foreizn, 10000 lbs.	Domestio, 10740 lbs Foreign, 11250 lbs
Double Furnace, Wgt. ready for shipment, Iron work fitted for erection, with Special Tiles, about		Domentic, 9050 lbs. Foreign. 9325 lbs.	Domentic, 10500 lbs	Domestle, 13650 lbs Forelgn, 14135 lba
Single Furnace. Price, Iron work fitted for erection,	-	-	\$	\$
Single Furnace. Price, Iron work fitted for erection, with Special Tiles,	\$	\$	\$	\$
Double Furnace. Price, Iron work fitted for erection,		\$	\$	\$
Double Furnace. Price, Iron work fitted for erection, with Special Tiles,		\$	\$	\$

[^3]
CAST IRON PACKING BOXES
 FOR
 Use in Case-Hardening and Annealing Furnaces.

Pattern Number.	Price.	Length.	Width.	Depth.
1	\$0 25	3 3.4"	2"	$2^{\prime \prime}$
2	3.5	31.2	312	31.2
3	50	4	4	51.2
4	55	5		612
5	75	7	61.4	$51 \cdot 2$
6	9.5		61.4	71.2
7	80	71.2	51.4	
8	61	N	3	63.4
9	85	5	312	91.2
10	50	10	31.2	3
11	50	-10 1.4	43.4	31.2
12	7.5	111.2	43.4	51.4
13	100	12	61.4	51.4
14	145	113.4	61.4	6
15	2 (1	8 3.4	- 3.4	8
16	290	11	111.4	9
17	80	14	41.2	
18	340	13	4) 3.4	$\div 3.4$
19	64.7	15 1-2	14	111
20	350	18	() 1.2	93.4
21	3×5	20	9	*
22	420	28	9	8
	With covers			
23	\$10 10	903.4	101.2	1412
24	1890 790	20 38 3	$\begin{array}{r}13 \\ 9 \\ 9 \\ \hline 1.2\end{array}$	
44	7190 140	38113.4	91.2	$\stackrel{8}{7} 1.2$

ROUND BOXES.

Pattern No.	Price.	Diameter.	Depth.	Weight.
172	A- 29	$\$ 280$	$153.4^{\prime \prime}$	$8^{\prime \prime}$
172	A-32	240	121.2	7810

These are all inside measurements. Add $1^{\prime \prime}$ for outside measurements.
in ordering, please give pattern number.

TRUCKS AND DUMPING FORKS,

For use in moving the boxes, flling the ovens, etc., are carried in stock, or can be furnished at short notice.

Price, No. 1 Truck, $\$$ No. 2 Truck, $\$$
Larger sizes of Trucks made to order.
Dumping Forks, price per 1b., \$

No. 0 sMALL HARDENING FURNACE

For Open Fire.

This Furnace is for use in tempering or heating small pieces for hardening, etc., but is not adapted to case hardening.

The furnace occupies a floor space of $311-2^{\prime \prime} \times 36^{\prime \prime}$ and is $56^{\prime \prime}$ high. The door counter-weight runs over a pulley $271-2^{\prime \prime}$ above the top of the furnace. The grate is $14^{\prime \prime}$ square. A loose cast iron plate can be placed $4^{\prime \prime}$ over the coals, thus making it the same as a muffler furnace. An air blast can be supplied through a $21-2^{\prime \prime}$ pipe.

Weight, ready for shipment, about 1208 lbs.
Net Weight, about 1010 lbs.
Dimensions of box for shipment, $62^{\prime \prime} \mathrm{x} 38^{\prime \prime} \mathrm{x} 11^{\prime \prime}$.
Price, $\$$

SODA KETTLLE.

This Kettle is used for cleaning or removing grease and dirt from small tools and parts of machines. A coil of steam pipe is employed to heat the water, in which a quantity of soda has been placed, and the pieces immersed in the solution when taken out, dry without rusting.
The Kettles are usually made with round tops and stand in the centre of the room among the machines, but they are also made of a form suitable to place against a wall or in a corner.
Outside Diameter of top plate, $38^{\prime \prime}$; diameter of kettle, $29^{\prime \prime}$; diameter of inside coil of pipe, $24^{\prime \prime}$; height from floor to top of flange, $37^{\prime \prime}$; depth of kettle, $22^{\prime \prime}$; diameter of wire basket or cage for receiving the work, $11^{\prime \prime}$; depth of basket, 16". Capacity of kettle, about 60 gallons.

A perforated bucket or shaker, $61-4^{\prime \prime}$ diameter, $13^{\prime \prime}$ long, is conveniently used in washing small pieces.
Weight for shipment, about 700 lbs .
Net Weight, about 550 lbs.
Dimensions of box for shipment, $40^{\prime \prime} \times 36^{\prime \prime} \times 41^{\prime \prime}$.
Price includes interior coil of pipe, wire basket, perforated bucket or shaker and the pipe with valves, etc., as shown in cut, boxed and delivered f. o. b. at Providence, R. I. Price, $\$$

IMPROVED WORK BENCH.

The above cut shows an improved design of Bench for Iron and Wood work. The leg or casting a consists of a rigid standard, a bracket for the support of the shelf c, and its accompanying back. The legs or standards are fastened to the floor by coach screws, slow ${ }^{-}$at l, and are supported at the back by the wall $B B$. They are usually placed about 4 feet apart and support the bench l, the shelf g, the framework n, and the sbelf c, and its accompanying back. The frame-work $n \boldsymbol{n}$, forms a strong support upon which slide the drawers. The shelf c, supported by the brackets is held in place by the cast iron clip, shown at the front. The shelf g, aftiords a neat and substantial support for the gas brackets. The front of the leg or standard is provided, at i, with a hole to receive the bolt for holding the vise and this con. striction brings the vise directiy over the leg or standard.
We are prepared to furnish complete sets of castings for patterns for the iron work of the above described bench, or castings complete for benches, drilled ready for use.
Circular, giving prices, weight and other information sent on application. Weight of leg casting complete, about 56 lbs .
Drawings, showing construction, sent with orders.

CAST IRON LETTERS.

These letters make an attractive, simple and durable sign for large buildings. Their size makes them visible at long distances and the beveled edges preserve the correct appearance through a wide range of view.

They may be painted to suit the color and situations of the buildings upon which they may be placed. When properly mounted the expense in maintaining these letters is very small as an occasional coat of paint is the only thing required to keep them looking well.

We have full alphabets and full sets of figures of each size. The large letters and figures are 5 feet high. The small letters and figures are 4 feet high.

Special circular and price list, giving full information, mailed on application.

A blue print of detail drawings, showing a method of mounting, is furnished with the letters.

219

CENTRIFUGAL WATER PUMPS.

Minimum Speed at which No. 2 Pump should run to raise water 4 feet, 800 rpm ; No. 4, 500 rpm .

Driving Pulley, No. 2 Pump, $2^{\prime \prime}$ diameter for $1^{\prime \prime}$ belt; No. 4 Pump, $23-4^{\prime \prime}$ diameter for $11-4^{\prime \prime}$ belt.

These Pumps are for use with water only, and as the bearings do not come in contact with the water, are well adapted for use on grinding or other machines where the water used contains a large amount of emery particles or grit.

The Pump consists of a simple fan revolving in a loose case. The fan revolves in a horizontal plane, and is immersed in the water. By this method the pump is constantly primed, snd there is no leak from loose packings.

The Driving Belt, which makes a quarter turn around the Idle pulleys, furnished with the pump, can run over the eounter-shaft, or can run over pulleys connected with some part of the machine.

The Bracket, which supports the idle pulleys, is held by two bolts that slide in slots, thus allowing the pulleys to be set in any desired position.

Price, No. 2 Pump, $\$_{7} 00$; No. 4 Pump, $\$ 1800$.

Tank for No. 2 Pump.

A Tank especially designed for use with this Pump, proFided with a straining pan and plug to draw off the watex can be furnished when desired.

Price, $\$ 800$.
Weingtle 67 lbs

PUMP ACCESSORIES.

Reller vasve.

Check Valve.

The following parts, for use with the pumps shown on the preceding pages, are carried In stock and can be furnished when desired.

For Oil Pump. Price.
No. 2 Distributing Pipe, $\$ 050$ Check Valve, 55 No. 2 Relief Valve, :. 100 No. 1 Strainer, 35

For Ko. I Geared Pump.

No. 2 Distributing Pipe, $\$ 050$ No. 2 Relief Valve, No. 2 Strainer,50

For No. 3 Geared Pump.
No. 4 Distributing Pipe, ${ }^{2} 075$ No. 3 Relief Valve, . . 125 No. 3 Strainer, 75

For No. in Geared Pump. No. 2 Distributing Pipe, $\$ 050$ No. 2 Relief Valve, . . 100 No. 2 Strainer, 50
Other parts are ordinary gas pipe and fittings, and are fur. melshed only when ordered.

NOTICE.

If 100 or more Metal Slitting Saws or Cutters for Sawing Bicycle Chain Links of any one size are ordered at one time, we make an extra discount.

Special Prices will be made on Standard Internal and External Cylindrical Gauges and Standard Caliper Gauges when ordered in large quantities. Price list of these Gauges, Pages 325 to 329 .

Machine Tools. Prices of Machine Tools, as well as other tools, not given in the catalogue, will be furnished upon application.

Milling Machines. We would call attention to the complete line of these machines, Pages 2 to 45 . They show many new features of importance; for example, all Universal, together with corresponding sizes of Plain Milling Machines are fitted with Positive Feeds, Steel Arms clamped with one lever. Telescopic Elevating Screw and other features that make the machines even more accurate and durable than formerly.

The New Method of Indexing, applied to the Universal Milling Machines, admits of all divisions from I to 382 .

The No. 2-A Universal Milling Machine is an entirely new departure in Milling Machine construction. It is especially well adapted for Motor Drive.

Milling Machine Cutter Arbors. We furnish, in addition to catalogue lists, these Arbors made to Metric Measure.

Standard Gears. The price lists have been omitted in this catalogue. Special Gear Lists mailed upon application.

Machinists' Tools. By the addition of the "B. \& S." Combination Squares, Pages 416 to 418 ; the "B. \& S." Protractors, Pages 419, 420, 423; and the "B. \& S." Combination Sets, Pages 42 I to 423 , this line is now exceptionally complete and we invite investigation through the Hardware and Supply Dealers.

Micrometer Calipers. The New Clamp Ring that has been applied to Nos. $4-\mathrm{A}, 5-\mathrm{A}$, $8,10,45,46,47$ and 48 , is new in design and recognized by users of Micrometers as much superior to the old style clamp nut. It is unusually efficient and simple in construction. There are no threads to become worn or catch dirt and as only a slight movement of the ring is required to clamp the measuring spindle firmly, there is practically no wear upon the parts.

Gear Cutters. Circular Pitch. These cutters are now listed on Pages 268 and 269. They are not kept in stock but made to order. We Respectfully Request:

That we be promptly notified of any defects apparent in the workmanship of any of our Machines or Tools.

That all verbal orders and instructions be confirmed in writing.

That all business communications be addressed to the Company.

BROWN \& SHARPE MFG. CO.

MACHINES AND TOOLS ADDED.

Automatic Cutting-Off Machine. No. oo.
Heavy "B. \& S." Combination Sets, Nos. 84, 87, 94 and 97.
Heavy "B. \& S." Combination Squares, Nos. 50 and 61 .
Heavy "B. \& S." Combination Protractors, Nos. 22 and 26.
Micrometer Calipers, Nos. 4-A, 5-A, 83.
Micrometer Caliper, Wooden Handle, for Rolling Mills, No. 17.
Micrometer Caliper, Screw Thread, No. 690.
Morse Taper End Mills.
Morse Taper Spiral End Mills.
New Clamp Ring for Micrometer Calipers, Nos. 4-A, 5-A, 8, 10, 45, 46, 47, 48.
Plain Milling Machines, Nos. oo Hand, r-H, 2-B, and $13-\mathrm{B}$.
Screw Pitch Gauge, No. 766.
Screw Slotting Attachment for Nos. oo, o and 2, Automatic Screw Machines.
Side Milling Cutters. List added to.
Spring Depth Gauge with Friction, No. 725.
Tempered Steel Shrink Rules. $6^{\prime \prime}$ added.
Thickness Gauge, No. 782.
Universal Depth Gauges, Nos. 711 and 712.
Universal Milling Machine, No. 2-A.
Wire Feed Screw Machine, Roller Feed, No. 4.
Worm Hobs. List added to.

FORMED MILLING CUTTERS

 For Milling Sewing Machine and Gun Parts.

These Cutters can be made in a great variety of outlines and can be sharpened by grinding without changing their form. They are economical in the production of duplicate and interchangeable parts.

In ordering send sketch of, or sample plece to be milled, with size of hole required in cutter.

MILLING CUTTERS.

Cutters of 3-4" face and over, have teeth of a spiral form. Cutters varying from the following list are made to order, of any required size.

No.	Diameter of Cutter.	Width of Face.	Size of Hole.	Price of each Cutter.
1	2 1-4"	$1.2^{\prime \prime}$	$7.8^{\prime \prime}$	\$175
2	21.4	1	7.8	250
3	21.4	13 -4	7-8	330
4	$21-4$	3-16	7-8	130
5	$21-2$	3-16	1	130
6	21.2	1.4	1	140
7	21.2	5-16	1	150
8	21.2	3-8	1	160
9	21.2	7-16	1	170
10	21.2	$1-2$	1	180
11	21.2	9-16	1	190
12	21.2	$5-8$	1	200
13	21.2	11-16	1	210
14	21.2	3-4	1	220
15	21.2	13-16	1	230
16	212	7-8	1	240
17	21.2	1	1	260
17 A	$21-2$	11.8	1	275
18	21.2	11.4	1	290
19	21.2	1 1-2	1	310
20	21.2	134	1	340
21	212	2	1	370
21 A	21.2	21.4	1	390
22	$21-2$	21.2	1	410
22 A	2112	23.4	1	425
23	21.2	3	1	450
24	$21-2$	312	1	500
25	21.2	4	1	550
25 A	23 -4	3-16	1	130
25 B	23 2-4	1.4	1	150
25 C	${ }_{2} 3$-4	5-16	1	160
26	$23-4$	$3-8$	1	180
27	$23-4$	7-16	1	185
28	$23-4$	1-2	1	190

List continued on next page.

MILLING CUTTERS-Continued.

No.	Diameter of Gutter.	Width of Face.	Size of Hole.	Price of each Cutter.
29	$23.4{ }^{\prime \prime}$	$916^{\prime \prime}$	1 "	\$200
30	23.4	$5 \cdot 8$	1	210
30 A	23.4	1	1	310
30 C	23 -4	11.8	1	325
30 E	23.4	11.4	1	340
30 H	23 -4	11.2	1	375
30 M	23.4	$13-4$	1	400
30 O	23 -4	2	1	420
30 R	$23-4$	21.2	1	460
30 T	$23-4$	3	1	500
30 U	23.4	31.2	1	550
31	23 3-4	4	11.4	600
31 A	23 3-4	5	11.4	740
32	$23-4$	6	11.4	1000
33	23.4	$11-16$	1	230
34	$23-4$	3-4	1	250
35	$23-4$	7-8	1	285
36	3	3-16	1	135
37	3	1-4	1	160
38	3	5-16	1	185
39	3	38	11.4	210
40	3	7-16	11.4	225
41	3	1.2	11.4	240
42	3	9-16	11.4	255
43	3	$5-8$	$11-4$	270
44	3	11.16	11.4	285
45	3	3-4	11.4	300
46	3	7-8	11.4	330
47	3	1	11.4	360
48	3	11.4	114	400
49	3	11.2	- 11.4	430
50	3	13.4	- 11.4	450
51	3	$\stackrel{2}{2}$	114	470
60	3	21.2	11.4	520
${ }_{61}^{62}$	3	3	11.4	540
62	3	3112	11.4	590
63	3	4	11.4	640
64	3	5	11.4	780
65	3	6	11.4	1080
66 67	$\begin{array}{lll}3 & 1-2 \\ 3 & 1\end{array}$	3-16	1	145
67	$\begin{array}{ll}3 & 1.2 \\ 3 & 1\end{array}$	$1-4$	1	170
68	$\begin{array}{ll}3 & 1.2 \\ 3 & 1.9\end{array}$	5-16	1	205
69	3112	3.8	1	240
70	$\begin{array}{lll}3 & 1.2 \\ 3 & 1 & 2\end{array}$	7.16	1	275
71	$\begin{array}{lll}3 & 1.2 \\ 3 & 1\end{array}$	1-2	11.4	315
72	$\begin{array}{llll}3 & 1.2 \\ 3 & 1.2\end{array}$	9.16	11.4	380
73	$\begin{array}{lll}3 & 1.2 \\ 3 & 1\end{array}$	5-8	11.4	345
74	$31-2$	11.16	11.4	365

List continued on next page.

MILLING CUTTIERS-Continued.

List continued on next page.

MIILING CUTTEERS-Continued.

No.	Diameter of Cutter.	Width of Face.	Size of Hole.	Price of each Cutter.
115	4 1.2"	1-2"	$13-4 \prime$	$\$ 410$
116	41.2	1.2	2	410
117	41.2	9.16	13.4	440
118	41.2	9.16	2	440
119	41.2	5.8	13.4	460
120	41.2	5.8	2	460
121	41.2	11-16	13 -4	485
122	41.2	11.16	2	485
123	41.2	$3-4$	13 -4	510
124	$41-2$	3-4	2	510
125	41.2	$7-8$	13.4	550
126	$41-2$	7.8	2	550
127	41.2	1	13.4	600
128	41.2	1	2	600
129	41.2	11.4	$13-4$	660
130	41.2	11.4	2	660
181	41.2	11.2	$13-4$	725
132	41.2	11.2		725
183	41.2	13.4	13.4	800
134	41.2	$13-4$	2	800
135	412	2	13 -4	875
136	41.2	2	2	875

 CUTTERS.

With Inserted Teeth.

The teeth are of tool steel inserted in the periphery of the cast iron body. The bushings, screws and teeth are interchangeable, thus allowing the teeth to be easily adjusted or removed.
The following sizes are carried in stock.

No.	Diameter.	Width of Face.	Hole.	Price Fach.
5	$6{ }^{\text {r }}$	$2^{\prime \prime}$	$11.4{ }^{\prime \prime}$	415
8	7	2	11.4	
11	8	2	11.2	\cdots
14	9	2	11.2	\%
17	10	2	11.2	

Other sizes made to order. Prices on applicatir

MILLING CUTTERS

AND
 SIDE MILLING CUTTERS

With Inserted Teeth.

Side Milling Cutter.

Made to Order. Milling Cutter.

We recommend that Milling Cutters and Side Milling Cutters more than $8^{\prime \prime}$ in diameter, be made with inserted teeth.

The teeth are of-tool steel, hardened and inserted in the periphery of the cast iron body. They are held in place by taper bushings and screws, and can thus be easily adjusted or removed.

Prioes on application.

MILLING CUTTERS

WITH

Nicked Teeth.
Cutters of this form are especially adapted for the heavier class of milling. The teeth being nicked, the chip is broken up, thus enabling a heavier cut to be taken than would be possible with the ordinary Milling Cutter.

No.	Diameter.	Width of Face,	Hole.	Price.
200	$21 \cdot 2^{\prime \prime}$	$212^{\prime \prime}$	1	\$4 90
201	21.2	3	1	540
202	21.2	31.2	1	600
203	21.2	4	1	660
204	3	21.2	11.4	625
205	3	3	11.4	650
206	3	312	11.4	710
207	3	4	11.4	770
208	3	5	11.4	940
209	3	6	11.4	1300
210	31.2	21.2	11.4	825
211	31.2	3	11.4	890
21.2	$31-2$	312	11.4	980
213	31.2	4	11.4	1100
214	31.2	5	11.4	1250
215	31.2	6	11.4	1425
216	4	21.2	11.4	1000
217	4	21.2	11.2	1000
218	4	3	11.4	1080
219	4	3	11.2	1080
220	4	312	11.4	1200
221	4	31.2	11.2	1200
222	4	4	11.4	1320
223	4	4	11.2	1320
224	4	5	11.4	1620
22.5	4	5	11.2	1620
226	4	6	114	1860
227	4	6	112	1860
228	41.2	21.2	13.4	1150
223	41.2	$\cdots 1.2$	$\stackrel{-}{1}$	1150
230	41.2	3	13.4	1275
231	41.2	3	2	1275
232	41.2	312	13 -4	1425
293	41.2	312	$\stackrel{\square}{2}$	1425
234	41.2	4	13.4	1575
235	41.2	4	2	1575
236	41.2	5	$13 \cdot 4$	1875
237 238	$\begin{array}{ll}4 & 1.2 \\ 4 & 1.2\end{array}$	5	$\stackrel{1}{1} 3$	1875
238 239	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 1\end{aligned} 1-2$	6	${ }_{9} 3.4$	2225
239	$41-2$	6	2	2225

SIDE MILLING CUTTERS.

These cutters are often used in pairs for sizing nuts, bolt heads etc. and are then called "Straddle Mills." They have teeth upon both sides and edges.

No.	Diam.	Width of Face.	Hole.	Price Each.
10	$2 \times$	$3.16{ }^{\prime \prime}$	1.2"	\$200
11	2	1.4	1.2	205
12	2	3.8	1.2	210
13	$\stackrel{2}{2}$	3.16	5.8	200
14	2	1.4	5.8	205
15	2	3.8	5.8	210
16	$\begin{array}{ll}2 & 1.2 \\ 2 & 1.3\end{array}$	1.4	78	215
16 A	212	5.16	7-8	220
17		38	7-8	220
${ }_{18}^{11} \mathrm{~A}$	$\begin{array}{ll}2 & 1.2 \\ 2 & 1.2\end{array}$	7.16	78	${ }_{2}^{2} 25$
18	$\begin{array}{llll}2 & 1 & 1.2 \\ 2 & 3.4\end{array}$	1.4	78	225 230
19 A	234	516	7.8	230
20	234	3.8	7.8	230
20.1	23.4	7.16	7-8	235
21	234	1.2	7.8	235
$2 \cdot 2$	3	1.4	1	240
22.1	3	5.16	1	245
23	3	3.8	1	250
23 A	3	7.16	1	$\stackrel{2}{2} 65$
24		1.2	1	280
$2+13$	31.2	7.16	1	350 350
${ }_{25}^{24}$	$\begin{array}{lll}3 & 1 & 1.2 \\ 3 & 1 & 12\end{array}$	9.26	1	350 350
25 26	$\begin{array}{lll}3 & 12 \\ 3 & 1 & 12\end{array}$	${ }_{5}^{9.8}$	1	350 3 70
26 A	4	1.2	1	400
27	4	5-8	1	470
28	4	5.8	7.8	470
28.1	4	5.8	11.4	
29	4	3.4 78 8	1	500 500
${ }_{39}^{29} \mathrm{~A}$	4 5	7.8 3.4	1	550 600
31 A	5	3.4	11.4	600
31	5	7.8	1	650
311	5	1	1	725
31 B	6	34	1	760
32	6		11.4	850
${ }_{33}^{33} \mathrm{~A}$	7	15-16	$\begin{array}{llll}1 & 1 & .2 \\ 1 & 1.4\end{array}$	850 1610
34	7	11.8	11.4	1700
34 A	8	1	11.4	1960
35	8	11 1 1 8	11.4	${ }_{23}^{23} 00$
36	8	1 1 1 1	$\begin{array}{lll}1 & 1.2 \\ 1 & 3\end{array}$	${ }^{23} 00$
${ }_{37}^{36} \mathrm{~A}$	8	13^{20}	$13-4$	2300 2300

INTERLOCKING SIDE MILLING CUTTERS.

These Cutters can be easily adjusted for maintaining a standard width of slot.

Unless otherwise ordered they are furnished in pairs.

END MILLS.

Left Hand Mill.
In ordering, state whether Right or Left Hand Mills are wanted.

No.	Diameter.	No. of Taper.	Length of Cut.	Whole Length.	Price.
0	1.4"	4	$1316{ }^{\prime \prime}$	2 7-16"	$\$ 100$
1	1.4	5	13-16	3	115
2	5.16	4	7.8	21.2	100
3	5.16	5	7.8	31.16	115
4	$3-8$	4	7.8	21.2	110
5	3-8	5	$7-8$	$31-16$	120
6	7-16	4	15.16	29.16	110
7	7-16	5	15.16	31.8	125
8	1.2	5.	1	33.16	130
9	1.2	7	11.8	51.8	145
10	9.16	5	11.16	$31-4$	135
11	9.16	7	11.4	51.4	150
12	5.8	5	11.4	3 7-16	145
13	5 S	7	11.2	$51-2$	170
14	11.16	7	$11-2$	$51-2$	175
15	11.16	9	11.2	63.4	190
16	$3-4$	7	15.8	55.8	180
17	3-4	9	15.8	67.8	195
18	13.16	7	15.8	55.8	190
19	13.16	9	15.8	67.8	200
20	7 -s	7	$13-4$	5.3-4	210
21	7.8	9	13.4	7	225
22	15.16	7	13.4	53.4	210
23	15.16	9	13 13-4	7	225
24	1	7	17.8	57.8	215
25	1	9	17.8	71.8	230
26	11.16	7	17.8	57.8	215
27	11.16	9	17.8	71.8	235
28	11.8	7	2	6	225
29	11.8	9	2	$71-4$	240
30	13 -16	7	2	6	225
31	13 -16	9	2	$71-4$	250
32	11.4	7	2	6	225
33	11.4	9	2	$71-4$	255
34	15.16	9	$21-8$	7 3-8	275
3.5	1 3-ネ	9	21.8	73.8	275
36	17.16	9	21.4	71.2	300
37	11.2	9	21.4	71.2	300

Morse Taper furnished if required.
1 Taper fits A and J Collets; No. 5, C, D and K Collets; and E Collets; No. 9, F, G, H, I, S and T Collets. lets see page 46. For List of Tapers see page 51.

SPIRAL EFD MIILS.

Left Eand $\mathbf{1}$ 面
In ondering, tate whether Piefin er Left Band lills aro warbel.

No.	Diametar.	Tre of Taper.	Leagth of Cmis	Trave Length.	Prise.
10	1.20	5	1"	$3: 16^{\circ}$	1130
11	1.2	7	118	$51-$	145
12	$9-16$	5	11.16	$31-4$	135
13	9.16	-	114	514	150
14	$5-8$	5	114	$37-16$	145
15	5.8	7	11.2	51.2	170
16	11.16	7	11.2	$51-2$	1.5
17	11.16	9	11.2	6 3-4	19
18	8.4	7	15	550	10
19	24	9	15.8	$67-8$	185
20	13.16	-	15 -	5 5-6	190
21	13.16	9	15.8	$67-8$	210
22	-.8	7	134	$53-4$	910
23	-8	9	13.4	7	935
24	15.16	7	134	$53-4$	210
25	15.15	9	134	7	235
26	1	7	$17-8$	57.8	215
27	1	9	178	-1-8	230
28	11.16	5	$17-8$	578	215
29	11.16	9	$17-8$	-1-8	235
30	11.8	7	2	6	225
31	11.8	9	2	$71-4$	240
32	13.16	7	2	6	235
33	13.16	9	2	714	250
34	114	7	2	6	225
35	114	9	2	714	255
36	$15-16$	9	218	73.8	275
87	13.8	9	21.8	73.8	275
38	17.16	9	$21-4$	71.2	300
39	11.2	9	214	71.2	300

No. 4 Taper fits A and J Collets; Ho x G. D and K Collets; No. 7, B and E Collets; No. 9, - T Collets. For Collets see page 46. Fr nage 51.

END MILLS WITH CENTRE CUT.

In ordering, state whether Right or Left Hand Mills are These End Mills are useful where it is desired to cut into the work with the end of the mill, and then move along as in cams, grooves, etc., ns the teeth are sharp on point. They and thus cut a path out from the cuts, especially in cast iron.

No.	Diameter.	No. of Taper.	Length of Cut.	ole Leagt.	
No.		5	1"	8 3-16"	$\$ 150$ 180
50	1-2'1	7	11.8	$\begin{array}{ll}5 & 1.8 \\ 3 & 1.4\end{array}$	170
51	1.2	5	1	$\begin{array}{ll}3 & 1-4 \\ 5 & 1-4\end{array}$	185
52	9.16 9.16	7	11.4	$\begin{array}{ll}5 & 1-4 \\ 3 & 7-16\end{array}$	180
68	9.16 5.8	5	11.4	$\begin{array}{ll}3 & 7.16 \\ 5 & 1.2\end{array}$	210
64	$5-8$ $5-8$	7	11.2	$\begin{array}{ll}5 & 1.2 \\ 5 & 1.2\end{array}$	215
65	${ }_{11}^{5-8}$	7	11.2	${ }_{6} 61.2$	285
56	11.16	9	11.2	6 5 5 $5-8$	225
57	3.4	7	$15-8$	$67-8$ 68	245
68	3.4 3.4	9	15.8	6 $7-8$ 5 $5-8$	235
59	3-4.16	7	15.8	$578-8$ 6	250
60	13.16 13.16	9	15.8	${ }^{6} 578$	260
61	13-8	7	1 3-4	7^{3-1}	280
62	7.8	9	13 3-4	5 5-4	260
63	${ }^{75} 15$	7	134	5 3-4	280
64	15-16	9	13 -4	77.8	270
65	15.16	7	17.8	$\begin{array}{ll} \\ 7 & 1.8\end{array}$	285
67	1	9	17.8	57.8	270
68	11.16	7	17.8	71.8	295
69 70	11.16	9	17.8	6	280
	11.8	7	2	$71-4$	300 280
72	11.8	9	2	6	280 310
73	13.16	9	2	714	310 280
74	13.16	7	2		280 320
75	11.4	9	2	71.4	320 345
76	11.4	9	21.8	73.8 73.8	345
77	$\begin{array}{ll}1 & 5.16 \\ 1 & 3.8\end{array}$	9	2. 1.8	73.8 7 1.2	375
78	$\begin{array}{ll}1 & 7.16\end{array}$	$6 \quad 9$	$211-4$ 21	71.2	- 375
80	11.2	9			

Morse Taper furnished if required.
No. 4 Taper fits A and J Collets; No. S, C, D and K Collets; No. 7, B and E Collets; No. 9, F, G, H, I, 8 and T Collets.

For Collets see page 46. For List of Tapers see page 51.

END MILLS.

Morse Taper.

BROWN \& SHARPE MFG.CO.

In ordering, state whether Right or Left Hand Mills are wanted.

No.	Diameter.	No. of Taper.	Length of Cut	Whole Length.	Price.
100	1.4"	1	13-16"	$35.8{ }^{\prime \prime}$	\$1 15
101	5.16	1	7.8	311.16	115
102	3.8	1	7.8	3 11-16	120
103	7.16	1	15-16	33.4	125
104	7.16	2	1	47.16	140
105	1.2	1	1	3 13-16	130
106	1.2	2	11.8	49.16	145
107	9.16	1	11.16	37.8	135
108	9.16	2	11.4	411.16	150
109	$5-8$	2	11.2	415.16	155
110	11.16	2	11.2	415.16	175
111	3.4	2	15.8	51.16	180
112	3.4	3	15.8	513.16	195
113	13.16	2	15.3	51.16	190
114	13.16	3	15.8	513.16	200
115	7.8	2	13.4	53.16	210
116	7-8	3	13.4	515.16	225
117	15.16	2	13.4	53.16	210
118	1516	3	13.4	515.16	225
119	1	2	17.8	515.16	210
120	1	3	17.8	55.16	235
121	11.16	2	$17-5$	6516	215
122	11.16	3	17.8	61.16	230
123	11.8	3	2	55.16	235
124	13.16	3	2	61.16	240
125	11.4	3	2	63.16	245
126	11.4	4	2	6 3-16	255
127	15.16	3	21.8	63.16	265
128	15.16	4	21.8	71.4	275
129	13.8	3	21.8	65.16	265
130	138	4	21.8	73.8	275
131	17.16	3	21.4	67.16	275
132	17.16	4	21.4	712	300
133	112	-3	21.4	67.16	275
134	11.2	$\checkmark 4$	21.4	71.2	300
135	15.8	4	23.8	75.8	325
136	13.4	4	23.8	75 -8	35)
137	17.8	4	21.2	73 -4	375
138	2	4	212	$73-4$	A

SPIRAL END MILLS.
 Morse Taper.

In ordering, state whether Right or Left Hand Mills ars wanted.

No.	Dismeter.	No. of Taper.	Length of Cut.	Whole Length.	Price.
110	1-2"	1	1"	3 13-16"	$\$ 130$
111	1.2	2	$11 . \mathrm{N}$	4 3-16	14.5
112	$9-16$	1	11.16	37 -8	135
113	9.16	2	11.4	411.16	150
114	5.8	2	11.2	415.16	155
115	11.16	2	11.2	415.16	175
116	$3-4$	2	15.8	51.16	180
117	3.4	3	15.8	513.16	$1!5$
11\%	13-16	2	15.8	51.16	190
119	13.16	3	15.8	513.16	200
120	7.8	2	13.4	53.16	210
121	7.8	3	13.4	515.16	225
122	13-16	2	13.4	53.16	210
123	15-16	3	13.4	515.16	225
124	1	2	17.8	50.16	215
125	1	3	17.8	61.16	230
126	11.16	2	17.8	55.16	215
127	11.16	3	17.8	6116	230
128	11.8	3	2	6316	235
129	13.16	3	2	63 3-16	240
130	11.4	3	2	63.16	245
131	11.4	4	2	71.4	255
132	1.5 .16	3	21.8	65.16	26.5
133	1.5 .16	4	21.3	73.3	275
134	13.5	3	21.8	6516	265
13.)	13.8	4	21.3	73.3	275
136	1716	3	21.4	67.16	275
137	1716	4	21.6	71.2	300
138	11.2	3	21.4	6716	275
139	11.2	4	21.4	712	300
140	15.5	4	23 -	75.8	325
141	13.4	4	23 E	75.8	350
142	178	4	21.2	73.4	37.
143	2	4	212	73.4	400

SHELL END MILLS.

Left Hand Mill.

No.	Diameter.	Length of Cut.	No. of Arbor on which Cutter can be used.	Hole.	Price.
1	$19.16^{\prime \prime}$	$13.4{ }^{\prime \prime}$	7	$3.4{ }^{\prime \prime}$	\$2 c5
2	15.8	13.4		$3-4$	280
3	111.16	13.4		3-4	30
4	13.4	134		3.4	3.2
5	$113-16$	13.4	90	3.4	$34{ }^{\text {a }}$
6	17.8	$13 \cdot 4$	\}	$3 \cdot 4$	360
7	115.16	134	94	3.4	380
8	2	134		$3 \cdot 4$	400
9	21.16	134		3.4	425
10	21.8	134		3.4	450
11	23.16	13.4)	34	475
12	21.4	$\bigcirc 1.4$)	1	500
13	$25-16$	21.4	,	1	525
14	23.8	21.4		1	550
15	27.16	21.4		1	575
16	$21-2$	21.4		1	6 (1)
17	$29-16$	21.4	91	1	625
18	25.8	21.4	\}	1	650
13	21116	21.4	95	1	675
2)	23.4	21.4		1	700
21	$213-16$	21.4		1	725
22	27.8	21.4		1	750
23	215.16	21.4	,	1	775
24	3	214	J	1	810

In ordering, state whether Right or Left Hand Mills are wanted.

For List of Arbors for use with the above End Mills see page 53.

SPIRAL SHELL END MILLS.

Left Hand Mill.

No.	Diameter.	Length of Cut.	No. of Arbor on which Cutter can be used.	Hole.	Price.
1	$19.16^{\prime \prime}$	$13.4{ }^{\prime \prime}$	$)$	3-4 ${ }^{\prime \prime}$	\$2600
2	15.8	13.4		$3-4$	± 80
3	111.16	13.4		3-4	300
4	13.4	13.4		3.4	320
5	$113-16$	13.4	90	$3-4$	340
6	17.8	13.4	\}	3-4	360
7	115.16	13.4	94	3-4	380
8	2	13.4		3-4	400
9	21.16	13.4		3-4	425
10	21.8	$13-4$		3-4	450
11	23.16	$13-4$,	3-4	475
12	$21-4$	21.4	$\}$	1	500
13	25.16	21.4		1	525
14	23.8	21.4		1	550
15	$27-16$	21.4		1	575
16	$21-2$	$21-4$		1	600
17	29.16	21.4	91	1	625
18	25.8	$21-4$	$\}$	1	650
19	211.16	$21-4$	95	1	675
20	23.4	$21-4$		1	700
21	$213-16$	21.4		1	725
22	$27-8$	$21-4$		1	750
23	$215-16$	21.4		1	775
24	3	$21-4$	J	1	800

In ordering, state whether Right or Left Hand Mills are wanted.
For List of Arbors for use with the above End Mills see page 53.

STANDARD T SLOT CUTTERS.

Left Hand Cutter.

In ordering, state whether Right or Left Hand Cutters are vanted.

$\begin{aligned} & \text { So. of } \\ & \text { Cutter } \end{aligned}$	Width of Slot A.	Diam. of Neck of Catter.	$\begin{aligned} & \text { Width of } \\ & \text { Slot } \\ & \text { B. } \end{aligned}$	Depth c.	Fxtreme Limit D.	$\left\|\begin{array}{c} \text { No. } \\ \text { of } \\ \text { Taper } \end{array}\right\|$	Price.
4	1-4"	$7.32{ }^{\prime \prime}$	1-2"	5-32"	$5.16{ }^{\prime \prime}$	4	\$150
7	14	7.32	12	5.32	5.16	5	1 6)
10	5-16	9-32	$5-8$	5.32	3-8	5	180
13	516	9.32	5-8	$5-32$	3.8	7	210
16	38	11.32	11.16	7.32	7-16	5	200
19	$3-8$	11.32	11.16	7.32	$7-16$	7	220
22	7.16	38	13-16	7.32	716	7	235
25	7.16	3.8	13.16	7.32	716	9	250
28	1.2	7.16	15-16	9-32	$9-16$	7	260
31	1.2	7.16	15-16	9.32	9.16	9	280
34	5-8	17-32	13 -16	13-32	11-16	9	310
37	3-4	21-32	15.16	17-32	1	9	345
40	$7-8$	25-32	15.8	11.16	11.16	9	375
43	1	29-32	17.8	13.16	13 -16	9	400

These Cutters are made 1-32" larger in diameter and in thickness than the figures given, to allow for sharpening. .

Other sizes made to order.
For Collets, see page 46. For List of Tapers, see page 51.

METAL SLITTING SAWS.

These are thin Milling Cutters. They are ground on the sides and left a little thicker at the outer edge than near the centre, to give a proper clearance in cutting deep slots.
In ordering special saws please state for what purpose they are required.

FORMED SAWS

FOR SLITTING COPPER.

Patented July 30, 1895.

These saws are designed especially for the slitting or sawing of metals that are of a soft or tenacious character, and are superior to the ordinary saw usually employed for this purpose.

The teeth are backed off and formed the same as in all formed milling cutters, and are sharpened by grinding the face, thus retaining the outline of the saw. Each alternate tooth is V shaped and, as the others are flat, the chip is split and forced out sidewise, having less tendency to clog than where the ordinary saw is employed.

The sides of these saws are ground concave for clearance.

These saws are made to order of any desired size.

SCREW SLOTTING CUTTERS.

These Cutters have a fine pitch of teeth especially adapted for the slotting of screw heads and similar work.
These Cutters are not ground on the sides.

 जн-	钲荡
	$\begin{aligned} & \text { 주를 } \\ & \text { 둥 } \end{aligned}$

SCREW SLOTTING CUTTTERS-Continued.

Cutters varying from the list are made to order.

JEWELERS' SAWS.

Many of the Screw Slotting Cutters listed above are suitable for Jewelers' use in sawing chain links, etc.

SCREW SLOTTING CUTTER ARBORS.

These Arbors are for use with Screw Slotting Cutters, and are adapted to use on Centres. The following sizes are carried in stock; 3-8"- $8^{\prime \prime \prime}-8-4^{\prime \prime}, 7-8^{\prime \prime}, 1^{\prime \prime}$.

Price, each,

244

FACE MILLING 'CUTTERS With Inserted Teeth.

Left Hand Cutter.
The cut shows a form of cutter especially adapted for all classes of face milling.

The body is of cast iron, provided with a taper hole and key way and is held firmly in place, on the arbor, by a screw.

The teeth are of tool steel, hardened. They are held in place by taper bushings and screws and can thus be easily adjusted or removed. The bushings, screws and teeth are iuterchangeable.

No. of Mill	Size.	Face A.	Face B.	No. of TaperHole.	No. of Arbor on which Cutter can be used.	Price.
1	$512^{\prime \prime}$	$2^{\prime \prime}$	$1{ }^{\prime \prime}$	10	79 or 80	\$1200
2	51.2	2	1	12	81, 82, 84, 85 or 86	1200
3	61.2	2	1	10	79 or 80	1400
4	61.2	2	1	12	$81,82,84,85$ or 86	1400
6	71.2	2	1	12	$81,82,84,85$ or 86	1600
7	81.2	23.8	1	12	$81,82,84,85$ or 86	1800
8	912	$23-8$	1	12	$81,82,84,85$ or 86	2000

[^4]
FACE MILLING CUTTERS

With Inserted Teeth and Threaded Holes.

These Cutters are the same in design as shown on opposite page, except that they are provided with Threaded Holes and are used directly upon the Spindle of the Machine.

$\begin{gathered} \text { No. } \\ \text { of } \\ \text { mill. } \end{gathered}$	Size.	Machines where used.	$\left.\begin{gathered} \text { Width } \\ \text { of } \\ \text { Face } \lambda \end{gathered} \right\rvert\,$	$\left\lvert\, \begin{gathered} \text { Widel } \\ \text { Fide } \\ \text { Face } \end{gathered}\right.$	Hole.	Price.
16	$71.2^{\prime \prime}$	$\left\{\begin{array}{l}\text { Nos. } 1,11-2 \text { \& } 2 \text { Unv; } \\ \text { Nos. } 12 \text { P Pl; Vt.Sp } \\ \text { Mil. Atch. for No. } \\ \text { Univ. \& No. } 4 \text { Plain. }\end{array}\right\}$	$2^{\prime \prime}$	$1^{\prime \prime}$	$\begin{aligned} & 21.2^{\prime \prime} \\ & 4, \mathrm{~L} \end{aligned}$	\$1800
17	71.2	$\left\{\begin{array}{l} \text { No. 3 Univ; No. }{ }^{3} \text { Pln; Vert. Sp. Mil. } \\ \text { Atch. for No. } 5 \text { Pln. } \end{array}\right\}$	"	"	$\begin{aligned} & 2 \\ & 4,4^{3.4} \end{aligned}$	1800
*18	71.2	$\left\{\begin{array}{l} \text { No. } 4 \text { Univ; Nos. } 4 \& \\ 24 \text { Platn; No. } 5 \text { Vert. } \\ \text { Spin. Mill. Mch. } \end{array}\right\}$	"	"	$\left\|\begin{array}{cc} 3 & 1.44^{\prime \prime} \\ 3 & 1-2 \mathrm{~L} \end{array}\right\|$	1800
*19	71.2	Nos. 5 \& 24, Dsg. 1900, P1.	"	"	4", 3 L	1800
20	81.2	$\left\{\begin{array}{l}\text { No. 3 Univ; } \\ \text { Pln; } \\ \text { Atch. } \\ \text { Atcri. Sor No. } \\ \text { Mil } \\ \text { 3 }\end{array}\right.$	23.8	"	$\left\lvert\, \begin{aligned} & 2,3-4^{\prime \prime} \\ & 4, L \end{aligned}\right.$	2000
* 21	81.2	$\left\{\begin{array}{l} \text { No. } 4 \text { Univ; Nos. } 4 \& \\ 24 \text { Plain; No. } 5 \text { Vert. } \\ \text { Spin. Minl. Mch. } \end{array}\right\}$	"	"	$\left\|\begin{array}{cc} 3 & 1-4 \\ 3 & 1-2 \end{array}\right\|$	2000
22	81.2	Nos. 5 \& 24, Dsg. 1900, Pl.	"	"	$4^{\prime \prime}, 3 \mathrm{l}$	2000
23	91.2	$\left\{\begin{array}{l} \text { No. 3 Univ; No. 3 } \\ \text { Pln; Vert. Sp. Mil. } \\ \text { Atch. for No. } 5 \text { Pln, } \end{array}\right\}$	"	"	$\left.\begin{aligned} & 2 \\ & 4.4^{4} \\ & 4, \mathrm{~L} \end{aligned} \right\rvert\,$	2200
* 24	$91-2$	$\left\{\begin{array}{l} \text { No. } 4 \text { Univ; Nos. } 4 \text { \& } \\ 24 \text { Plain; No. } 5 \text { Vert. } \\ \text { Spin. Mill. Mch. } \end{array}\right\}$	،	"	$\left\|\begin{array}{ccc} 3 & 1 & 4 \\ 3 & 1-2 \end{array}\right\|$	2200
* 25	91.2	Nos. 5 \& 24, Dsg. 1900, Pl.	"	"	$4^{\prime \prime}, 3 \mathrm{~L}$	2200

[^5]

Right Hand Cutter.

No.	Diameter.	Thickness.	Hole.	Price.
1	$21 \cdot 2^{\prime \prime}$	1.2 "	$7-8^{\prime \prime}$	\$270
2	$23 \cdot 4$	1.2	1	300
3	3	1.2	11.4	325

ANGULAR CUTTERS WITH THREADED HOLES.

These Cutters have an angle of 60° and are made hoth Right and Left Hand.

No.	Diameter.	Thickness.	Hole.	Thread.	Price.
1	$11^{\prime \prime}{ }^{\prime \prime}$	$7.16{ }^{\prime \prime}$	$3-8{ }^{\prime \prime}$	-0, L	\$2 25
2	15.8	9.16	1.2	16, I/	250

Right Haud Cutter.

ANGULAR CUTTERS
 - AND
 CUTTERS
 FOR SPIRAL MILLS.

These cutters can be sharpened by grinding without chang. ing their form, and are made to order.

ANGULAR CUTTERS.

With Side Ground Concave.

These Cutters have the side ground concave, and we carry in stock Cutters of $45^{\circ}, 50^{\circ}, 60^{\circ}$, 70° and 80° angle, both Right and Left hand. In ordering, state whether Kight or Left hand is wanted.
I.
H.

No.	Diameter.	Thickness.	Hole.	Price.
1	2 1.2"	1-2"	$7.8{ }^{\prime \prime}$	-\$2 25
\because	23.4	1.2	1	250
3	3	$1-2$	11.4	275

DOUBLE ANGLE CUTTERS.

We carry in stock Cutters of $45^{\circ}, 60^{\circ}$ or 90° included angle.

No.	Diameter.	Thickness.	Hole.	Price.
1	2 1.2"	1-2"	$7-8$ '	\$270
2	23.4	1.2	1	300
3	3	12	11.4	325

LARGE FORMED

MILLING CUTTERS.

Milling Cutters of irregular form are used in gangs limited in size only by the capacity and power of the Milling Machine.
Single Cutters, $\mathbf{7}^{\prime \prime}$ diameter or $6^{\prime \prime}$ long, are not uncommonly made in one piece.

CUTTERS FOR SPIRAL MILLS.

We keep in stock a form of cutter especially adapted to the cutting of spiral mills, either $40^{\circ}, 48^{\circ}$ or 53° angle on one side and 12° on the other, and are right hand cutters. The cut illustrates a cutter at work, in the position required in cutting the teeth of a spiral cutter.

No.	Diameter.
$\begin{aligned} & \frac{1}{2} \\ & \frac{3}{3} \end{aligned}$	$\begin{aligned} & 2 \\ & 2_{2}^{1} \cdot 2^{\prime \prime} \\ & 3 \end{aligned}$

Thickness.	Size of Hole.	Price.
$1 \cdot 2^{\prime \prime}$	$7.8^{\prime \prime}$	$\$ 270$
1.2	1.	300
1.2	11.4	325

V shaped Cutters of any angle made to order.

CUTTERS FOR GROOVING TAPS AND REAMERS.

FORM OF TAP.

FORM OF REAMER.

CUTTERS FOR

GROOVING TAPS AND

REAMERS.

No. of Cutter.	Diameter of Tap.	$\begin{gathered} \text { Number of } \\ \text { Teeth } \\ \text { in Tap. } \end{gathered}$	Diam. of Cutter.	Hole in Cutter.	Price of Fiach Cutter.
1	0 to $1.8^{\prime \prime}$	4	$13 \cdot 4^{\prime \prime}$	$7-8^{\prime \prime}$	\$2 60
2	5.32" "6 1.4	4	13.4	78	210
3	9.32 " 3-8	4	178	7-8	220
4	7.16 " 5.3	4	2	7.8	240
5	11.16 " 7.8	4	21.8	7.8	240
6	15.16 " 111.4	4	21.4	7-8	270
7		4	$\stackrel{3}{2}-5$	7.8	270
8	111-16 " 2	4	25.8	$7-8$	300

No. 1 Cutter is suitahle for grooving taps $1-\mathrm{s}^{\prime \prime}$ or less diameter; No. 2 for taps larger than $1-8^{\prime \prime}$ and up to $1.4^{\prime \prime}$ diameter, \&c. Sce cut on preceding page.
These Cutters are also adapted for fluting Reamers, for which purpose it is necessary only to cut one or more grooves of a less depth in order to flute unevenly. See cut on preceding page.

No. of Cutter.	Diameter of Reamer.	Number of Teeth in Reamer.	Diam. of Cutter.	Hole in Cutter.	$\begin{aligned} & \text { Price } \\ & \text { of t:ach } \\ & \text { Cutter. } \end{aligned}$
1	1-k' to 1-4"	6	$13.4{ }^{\prime \prime}$	7-8"	\$200
2	9-32 "3 3-s	6	13.4	7-8	$\stackrel{210}{210}$
3	$\begin{array}{ll}13-32 & \text { "6 } \\ & 1-2\end{array}$	6	17.8	7.8	220
4	17-32 "1 3.4	8	2	7.8	$\bigcirc 240$
		8	${ }_{2}^{2} 11.8$	78.8	2440 240
5	$\begin{array}{llllll}1 & 13.32 \\ 1 & \text { "1 } & 1 & 3\end{array}$	10	2118	\%-8	240
6	125.32 " 2	10	21.4	7.3	2%

These Cutters can be sharpened by grinding without changing their form.

In ordering, give number of Cutter, or diameter and number of teeth of Tap or Reamer as by above lists.

CUTTERS

FOR

GROOVING TAPS.

Number of Cutter.	Diameter of Tap.	Diameter of Cutter.	Hole in Cutter.	Price of Kach Cutter.
1	0 to 1.8'	$13.4{ }^{\prime \prime}$	$7-8{ }^{\prime \prime}$	\$200
2	5.32 " 14	13.4	7-8	210
3	932 " 3.8	17.8	78	220
4	7.16 " 5.8	2	7.8	240
5	1116 " 7.8	21.8	7.8	240
6	15.16 " 11.4	21.4	$7-8$	270
7	$\begin{array}{llll}1 & 5.16 & \\ & 1 & 5.8\end{array}$	23.8	$7-8$	270
ε	111-16 "2	$25-8$	7-8	300

We hare added to our stock a style of Cutter adapted to grooving taps oniy. These cutters do not make as deep a groove in proportion to the width as the Tap and Reamer Cutters. They are not suitable for fluting reamers. Sec cut below. These cutters can be sharpened by grinding without changing their form. In ordering, give number of Cutter or diameter of Tap, as loy above list.

FORM OF TAP
Digitized by GOOgle

CUTTERS FOR FLUTING REAMERS.

The cut shows a form of Cutter that makes a tooth that allows the chips to be removed more readily and has greater strength than the form made by the Cutters for Grooving Taps and Reamers.
In ordering, give number of Cutter or diameter of Reamer as by the following list.

No. of Cutter.	Diameter of Reamer.	Number of Teeth.	Hole in Cutter.	Price.
1	$1.8^{\prime \prime}$ to $3.16^{\prime \prime}$	6	$7.8{ }^{\prime \prime}$	\$200
$\underline{1}$	$1.4 \quad$ " 1.16	6	7.8	210
3	$3-8 \quad$ " $7-16$	6	7.8	22^{\prime}
4	1-2 \quad " 11.16	6 to 8	7-8	240
5	$3-4$ " 1	8	7.8	240
6	$11-16{ }^{1} 1011-2$	10	7.8	270
7	19.16 " 21.8	12	7.8	270
8	21.4 " 3	14	$7-8$	300

CUTTERS WITH SPECIAL HOLES.

These Cutters are among those furnished with the sets of tools sent with milling machines and are not otherwise listed.

Name of Cutter.	Diameter.	$\begin{aligned} & \text { Width of } \\ & \text { Face. } \end{aligned}$	Hole.	Price.
Face Mill with Hub	$4^{\prime \prime}$	1 "	No. 10 Taper	\$10 C0
Face Mill . .	4	1	1', 19, L.	700
Face Mill	5	11.4	1, 10, L.	900
Milling Cutter	11.4	3-16	3-8, 2 , L.	150
Milling Cutter.	111.16	3-16	1-2, 16, L.	175
Profising Cutter	21.2	21.2	No. 10 Taper	575
A ngular Cutter, 60°, with Hub, L. H.	3 3-4	11.4	No. 10 Taper	1000

For List of Arbors, see page 51.

CUTTERS FOR

MAKING
TWIST DRILLS.

Number ef Cutter.	$\begin{gathered} \text { Diameter } \\ \text { of } \\ \text { Drill. } \end{gathered}$	Diam. o! Circle made by Cutter.	Diameter of Cutter.	$\begin{gathered} \text { Hole } \\ \text { in } \\ \text { Cutter. } \end{gathered}$	Price of Ench Cutter.
1	1.16"	. 06	$13.4{ }^{\prime \prime}$	$7.8^{\prime \prime}$	*150
2	1.8	. 08	13.4	7.8	170
3	3.16	. 11	13.4	7.8	190
4	1.4	. 15	13.4	7.8	210
5	6.16	. 19	2	7.8	230
6	3.8	. 23	2	7.8 7.8	230
7	7.16	.27	2		240 260
8	19	. 31	2	$1-8$ -8	260
9	9.16	. 35	21.	7.8	280
10	5.8	. 39		1.	300
11	1116	. 44	$\begin{array}{lll}2 & 1.8 \\ 2 & 1\end{array}$	7-8	320
12	3.4	. 44	21.8	7-8	340
13	13.46	. 50	21.4	7.8	360
14	d.16	. 56	21.4	7-8	380
15	7.8 15.16	. 6	21.2	7-8	400
16	${ }^{15} 16$. 70	21.2	7.8	420
17	1	.77	23.4	7.8	450
17	11.8	. 85	23.4	7.8	500

These Cutters can be sharpened by grinding without changing their form.

In ordering, give number of Cutter or diameter of Drill as by above list.

CUTTERS FOR MAKING STRAIGHT LIPPED TWIST DRILLS.

These Cutcers can in razonios: \because reni:fe changing their form.
In ordering, give numier s. \%. as by above list.

CUTTERS FOR MAKING FOUR-LIPPED TWIST DRILLS.

The cut shows a form of cutter, which we carry in stock, especially adapted to cutting Four-Lipped Twist Drills that are used in screw and chucking machines for roughing out holes previous to reaming. These drills are made, when possible, as shell drills to be used on an arbor, and should have a spiral or " $t w i s t$ " of fifteen degrees.
In ordering give number of cutter or size of drill as by the following list.
These cutters can be sharpened by grinding without changing their form.

No. Cuttei.	Diameter of Drill.	Diameter of Cutter.	Bole in Cutter.	Price of Cutter.
1	to $11-2^{\prime \prime}$	$23-4^{\prime \prime}$	$\mathbf{1}^{\prime \prime}$	$\$ 600$
2	11.2 to 3	3	$\mathbf{1}$	700

CONVEX AND CONCAVE CUTTERS

For Milling Half Circles.

These Cutters can be sharpened by grinding without changing their outline.

No.	Diameter of Circle.	Diameter of Cutter.	Size of Hole.	Convex Cutter. Price.	Concave Cutter. Price.
10	$1.8{ }^{\prime \prime}$	$2{ }^{\prime \prime}$	$7.8^{\prime \prime}$	\$200	\$240
11	3.16	2	7-8	225	270
12	1-4	2	7.8	250	300
13	$5-16$	21.4	7.8	280	335
14	3.8	21.4	7.8	310	370
15	7.16	21.4	7.8	335	400
16	1.2	214	7.8	360	430
17	5-8	$23-4$	1	400	4 80
18	3-4	3	1	440	525
19	7.8	31.4	1	480	575
20	1	31.4	1	525	630
21	11.8	312	1	575	690
22	11.4	312	1	625	750
23	13.8	3 3-4	1	700	840
8	11.2	33.4	1	775	930

CONVEX CUTTERS

and interlocking concave

CUTTERS.

No.	Diameter of Cirole.	Diameter Cutter.	Size of Hole.	Convex Cutter Price.	Interiociding Concare Cuties Prioe.
80	3.8'	$21.4{ }^{4}$	$7.8{ }^{\prime \prime}$	$\$ 310$	\$5 26
31	1.2	21.4	7.8	360	610
32	5-8	2 3-4	1	400	680
83	3-4	3	1	440	750
84	$7-8$	$31-4$	1	480	815
35	1	3 1-4	1	525	890
86	11.8	31.2	1	575	975
87	11.4	$31-2$	1	625	1060
88	13.8	3 3-4	1	700	1190
39	11.2	3 3-4	1	775	13 It

257

CORNER-ROUNDING CUTTERS.

These Cutters have side as well as radial clearance and can be ground without changing thelr outline.

In ordering single Cutters, state whether Right or Left hand is wanted.

No.	Radius of Circle.	Diameter.	Hole.	Price Single Cutter.	Price Double Cutter.
10	1-16 ${ }^{\prime \prime}$	$2^{\prime \prime}$	$7.8{ }^{\prime \prime}$	\$200	\$2 40
11	3.32	2	7.8	225	270
12	1.8	2	7.8	250	300
13	$5-32$	214	7.8	270	335
14	3-16	$21-4$	7.8	290	370
15	7.32	21.4	7-8	310	400
16	14	21.4	7.8	330	430
17	5.16	$23-4$	1	350	480
18	3.8	3	1	370	52.5
19	7.16	31.4	1	390	575
$2)$	1.2	31.4	1	420	630
21	9.16	$31-2$	1	450	690
22	5.8	31.2	1	500	750
23	11-16	${ }^{2}$ 3-4	1	575	840
24	$3{ }^{-1}$		1	650	930

SPROCKET WHEEL CUTTERS

For Block Centre Chains.

We carry in stock a form of Sprocket Wheel Cutter for the ordinary $1^{\prime \prime}$ pitch chain.
The Cutters for the smaller sized wheels are for cutting a curved form of tooth, to prevent the chain from mounting the sprocket, while the cutters for the larger sized wheels make a straight sided tooth.

Cutters of special forms, or to cut two teeth at one time, are made to order.

No. of Tceth of Sprocket	Diameter of Cutter.	Hole in Cutter.	Price Single Cutter.
6	23.4 "	1 "	8600
7	23.4	1	600
8	$23-4$	1	600
9	$23-4$	1	600
10and 11	23.4	1	${ }_{6}^{600}$
12 and 13	23.4	1	600
14 to 16	23.1	1	600
17 to 20	23.4	1	${ }_{6}^{600}$
21 andover.	23.4	1	6 OC

Double Cutters, Price, $\$ 13$ oכ Per Pair.

CUTTERS FOR SAWING BICYCLE CHAIN LINKS.

These Cutters are especially adapted to run in gangs, for sawing bicycle chain links. Like metal slitting saws they are ground on the sides for clearance. They are $092^{\prime \prime}$ thick and made in two sizes, as follows: $3^{\prime \prime}$ diameter, $1^{\prime \prime}$ hole; and 3 1-4" diameter, 1 1-4" hole.
Price, $\$ \mathrm{I}$ ∞ each.

FORMULA

For Calculating Diameters of Sprocket Wheels for Block Centre Chains.

$\mathrm{N}=$ No. of Teeth.
$b=$ Diameter of Round Part of Chain Block.
B = Centre to Centre of holes in Chain Block.
$A=$ Centre to Centre of holes in side links.

$$
\alpha=\frac{180^{\circ}}{N}
$$

$\operatorname{Tan} . \beta=\frac{\operatorname{Sin} . \alpha}{\frac{B}{A}+\operatorname{Cos} \cdot \alpha}$
Pitch Diam. $=\frac{\mathbf{A}}{\operatorname{Sin} . \boldsymbol{\beta}}$
Outside Diam. $=$ Pitch Diam. $+b$
Bottom Diam. $=$ Pitch Diam. $-b$
In calculating the diameter of Sprocket Wheels the Bottom Dismeter is the crost important.

SPROCKET WHEEL CUTTERS

For Roller Chains and Block Centre Chains.

We furnish at short notice Sprocket Wheel Cutters for Roller Chains and Block Centre Chains.

Cutters for Roller Chains.

Circular Pitch.	Diameter of Rolls.	Diameter of Cutter.	Hole in Cutter.	Prico.
3-4"	.47"	$3^{\prime \prime}$	$1{ }^{\prime \prime}$	\$650
15.16	. $5625^{\prime \prime}$	33.8	1	700
1	. $5625^{\prime \prime}$ or . $625{ }^{\prime \prime}$	3 8-8	1	700
11.4	$.625^{\prime \prime}$ or .750"	38 -4	11.4	750
11.2	.75" or ${ }^{\prime \prime} 87{ }^{\prime \prime}$	4	11.4	800

In ordering, specify the number of teeth in the sprocket, and the diameter of the roller.

Cutters for Block Centre Chains.

Circular Pitch.	Thickness of Block.	Diameter of Cutter.	Centre to Centre of Block.	Hole in Cutter.	Priee.
$15.16{ }^{\prime \prime}$.4375"	3 1.2"	.5313"	1 1-4"	$\$ 750$
11.2	17-32	$38-4$. 5625	114	800

Seven Cutters are made for each pitch, for Nos. of teeth as follows: 8, 9, 10 and 11, 12 and 13, 14 to 16, 17 to 20, 21 and over.

For List of Sprocket Wheels for the ordinary 1" Pitch Chain, see page 258.

FORMULA

For Calculating Diameters of Sprocket Wheels for Roller Ohains.

$\mathrm{N}=$ Number of Teeth in Sprocket.
$\mathbf{P}=$ Pitch of Chain.
$\mathrm{D}=$ Dlameter of Roller.
$\alpha=\frac{180^{\circ}}{\mathrm{N}}$
Pitch Diameter $=\frac{P}{\operatorname{Sin} . \alpha}$
Outside Diameter $=$ Pitch $+\mathbf{D}$.
Bottom Diameter=Pitch-D.

PATENT CUTTERS

FOR THE

TEETH OF GEAR WHEELS,

WHICH CAN BE

Sharpened by Grinding Without Changing Their Form.

The Patent Cutters for the teeth of Gear Wheels, from their peculiar construction, can be sharpened when dull by grinding the faces of the teeth. This operation can be re. peated without altering the form of the tooth which the Cutter makes, thereby rendering them many times more valuable than Cutters of ordinary form.

Cutters marked * are not kept in stock, but are made to order at short notice.
Orders should be given by annexed tables, stating the No. of Cutter and the Diametral Pitch required. By Diametral Pitch is meant the number of teeth to the inch in diameter on pitch circle of any wheel. In ordering Catters for worm wheels, give the number of teeth in wheel, the diameter of worm and number of threads to the inch.

Centre Line on Gear Cutters. We would call attention to the centre line on our Gear Cutters, which may be con venient in setting cutterse the work spindle.

DIRECTIONS FOR USING THE CUTTERS.

The Cutters ghould be kept perfectly sharp by grinding the fince of the terth on the side of a solid emery or vulcanite wheel, wheh has lis edge beveled on one side so as to reach to the hottom of the tereth. This wheel should be pution an arbor with a shoulder and nut, so that the flat side will run true and at a velocity of from 2000 to 3000 recolutions per minute. If used In a common hand lathe the top of the rest should be male square or vertical to the face of the wheel, or what is better, use a small platform in the place of the rent. Then, by laying the cutter on the rest or platform, the fice of the weith can be ground square, which is very important. The cutters should not he crowded too hard, especially whon cutting through at the end of the tooth. The depth of the space mule ly these cutters affords ample clearance, as it c.xceds the working depth of the tooth by an amount equal to ont-tenth of the thickness of the tooth on the pitch line.

PATENT INVOLUTE CUTTERS

For Teeth of Gear Wheels.

Elght Cutters are made for each pitch, as follows:

No. I will cut wheels from 135 teeth to a rack.								
			.	5.5			134	eeth.
" 3	"	"	"	35	"	"	54	"
" 4	"	"	"	26	"	"	34	"
" 5	"	"	"	91	"	"	25	"
" 6	"	"	"	17	"	"	20	"
" 7	*	"	"	14	"	"	16	
	"	"	"	12	"	"	13	"

We are prepared to furnish to order Gear Cutters from 2 tos pitch inclusive of half numbers, for the accommodation of those who require a finer division of the number of teeth to be cut with each cutter than can be cut with the regular number. The Nos. 1 tos, as listed above, are the regularcuttersas furnished heretotore.
The half numbers are as follows:

No. of Cutter.	Range.	No. of Cutter.	Range.
11.2	s0 to 134 teeth.	51.2	19 to 20 teeth.
21.2	42 " 54 "	61.2	$10^{15} 16$ "
31.2	30 "1834	71.2	13
+1.2	23 " 25 "		

In ordering, give the No. of Cutter and Diametral Pitch reguired. Cutters in stock can be ordered by telegraph. Form of Telegram:-"Sendone Cutter, No. five, eight pitch." When ordering Cutters for Bevel Gears, note instructions given on pages 280 and 281.
${ }^{2}$ For Prices, see pages 263 to 277 .
KEEP CUTTERS SHARP.

PATENT INVOLUTE CUTTERS

FOR TEETH OF GEAR WHEELS.

All Gears of same Pitch cut with these Cutters are interchangeable.

Diametral Pitch.	Diameter of Cutter.	Hole in Cutter.	Price of each Cutter.
*1 14	7 1-4"	1 1-2"	\$32 00
*11.2	61.2	11.2	2400
*1 3-4	53.4	11.2	1850
*2	5	11.4	1250
*2 1-4	$41-2$	11.4	1125
*-2 1-2	41.4	11.4	1000
*2 3-4	4	$11-4$	900
3	$313-16$	11.4	700
*3 1-4	313 -16	114	650
*3 1-2	39.16	11.4	625
*3 3.4	3 9-16	11.4	600
4	33.8	11.4	550
*4 1-2	31.4	11.4	500
5	3 1-16	11.4	450
*5 1-2	3116	11.4	420
6	234	11.16	390
7	29.16	11.16	360
8	21.2	11.16	340
9	23.8	11.16	320
10	21.8	7.8	300
11	2 1-16	$7-8$	275
12	2	7.8	265
*13	2	7.8	260
14	2	7.8	255
*15	2	7.8	250
16	$115-16$	7.8	245
18	1 15-16	7.8	235
20	17.8	7-8	230
22	$113-16$	7.8	220
24	13.4	7.8	210
26	13 -4	7.8	195
28	13.4	7.8	180
30	13.4	7.8	180
32	13.4	7.8	180
36	13.4	7.8	180
*38	13.4	7.8	180
40	13.4	7.8	180
*44	13.4	$7-8$	180
48	13.4	7.8	180
*50	13.4	7.8	180
*56	13.4	7.8	180
*60	$13-4$	7.8	180
*64	$13-4$	7.8	180
*70	13.4	7.8	180
*80	13.4	7.8	180
*120	$13-4$	7.8	180

C'utters marked*are not kept in stock, lut are made to order. Eight Cutters made for each pitch; see page 262.

KEEP CUTTERS SHARP.

TAPER REAMERS.

No. of Taper.	Length of Flutes.	Price.	No. of Taper.	Length of Fluter.	Price.
1	$27.8^{\prime \prime}$	$\$ 175$	9	61.8	\$400
2	31.8	200	10	67.8	500
8	38.8	225	11	75.8	600
4	311.16	260	12	81.4	800
5	4	300	13	$83-4$	1000
6	43.8	325	14	91.4	1200
7	47.8	350	16	10	1600
8	51.2	375	18	10 3-4	2200

STANDARD KEYWAYS FOR CUTTERS.

*1 1-2" For Cutters for Brown \& Sharpe Automatic Gear Cutting Machine, use 5-16" key.
*1 3.4" For Cutters for Brown \& Sharpe Automatic Gesr 7utting Machine, use 3-8" key.

PATENT

INVOLUTE CUTTERS

FOR TEETH OF GEAR WHEELS.

FOR USE ON
No. 3 Automatic Gear Cutting Machines.

Diametral Pitch.	Diam. of Cutter.	Hole in Cutter.	Price.
*4	3 1.2',	1 "	\$5 50
*41-2	33.8	1	500
5	31.4	1	450
*5 1-2	31.8	1	420
6	3	1	390
7	27.8	1	360
8	27.8	1	340
9	$23-4$	1	320
10	$23-4$	1	300
11	$25-8$	1	275
12	25.8	1	265
*13	- 25.8	1	260
14	21.2	1	255
*15	21.2	1	250
16	21.2	1	245
18	23.8	1	235
20	23.8	1	230
22	21.4	1	220
24	$21-4$	1	210
*26	21.4	1	200
*28	$21-4$	1	200
*30	21.4	1	200
*32	21.4	1	200
*36	21.4	1	200
*40	21.4	1	200
*48	$21-4$	1	200

Cutters marked * are not kept in stock but are made to order.
Eight Cutters made for each pitch. See page 262.
KEEP CUTTERS SHARP.

PATENT INVOLUTE CUTTERS

For Teeth of Gear Wheels.
FOR USE ON No. 4 AUTOMATIC GEAR CUTTHIG MACHINES.

Diametral Pitch.	Diam. of Cutter.	Hole in Cutter.	Price.
*3	4 1.4"	$11.4{ }^{\prime \prime}$	\$750
*3 1-2	4	11.4	675
4	3 3-4	$11.4{ }^{*}$	600
*4 1-2	33.4	11.4	550
5	35.8	11.4	525
*5 1.2	35.8	11.4	500
6	31.2	11.4	475
7	33.8	11.4	450
8	$31-4$	11.4	425
9	31.8	11.4	$400{ }^{\circ}$
10	3	11.4	375
11	- 7-8	$11-4$	350
12	¢ 7.8	11.4	395
*14	$27-8$	11.4	300
*16	27.8	11.4	300
*18	27.8	11.4	300
*20	$23-4$	11.4	300

FOR USE ON No. 5 AUTOMATIC GEAR CUTTING MACHINES.

Diametral Pitch.	Diam. of Cutter.	Hole in Cutter.	Price.
*2	$53.4{ }^{\prime \prime}$	$11.2{ }^{\prime \prime}$	\$13 50
*2 1.4	51.2	11.2	1225
*2 1.2	5	11.2	1050
*23-4	4 3-4	11.2	950
3	$43-4$	11.2	800
*3 1-4	$41-2$	11.2	775
*3 1-2	$43-8$	11.2	725
*3 3-4	41.4	11.2	675
4	41.4	11.2	625
*4 1-2	41.8	11.2	575
5	4	11.2	525
*5 1.2	37.8	11.2	500
6	3 3-4	11.2	475
7	35.8	11.2	450
8	31.2	11.2	425
*9	31.2	11.2	400
*10	$31-2$	11.2	375

Cutters marked * are not kept in stock, but are made to order. Eight Cutters made for each pitch; see page 262, KEEP CUTTERS SHARP.

PATENT INVOLUTE CUTTERS

For Teeth of Gear Wheels.

 FOR USE ONNo. 6 AUTOMATIC GEAR CUTTING MACHINES.

Diametral Pitch	Diam. of Cutter.	Hole in Cutter.	Price.
*13-4	$61.2^{\prime \prime}$	$13-4{ }^{\prime \prime}$	\$1850
2	$61-4$	13 -4	1400
*2 1.4	6	$13-4$	1275
21.2	$53-4$	$13-4$	1100
*2 3-4	$51-2$	$13-4$	1000
3	$51-4$	13 -4	850
*3 1-4	51.8	13 -4	825
* 1-2	$47-8$	$13-4$	775
*3 3-4	43.4	$13-4$	725
4	45.8	13.1	675
*41.2	41.2	$13-4$	625
5	$43-8$	$13-4$	575
*5 1-2	4 3-8	13 -4	575
6	41.4	13 -4	550
* 7	$41-8$	$13-4$	525
*8	4	13 -4	500

Cutters marked *are not kept in stock, bat are made to order.

CUTTERS' FOR

MITRE AND BEVEL GEARS.

FOR USE ON

NO. 13 AUTOMATIC GEAR CUTTING MACHINES.

Diametral Pitoh.	Diam. of Cutter.	Hole in Cutter.	Price.
4	3 3-4"	$11.4^{\prime \prime}$	\$) 50
6	35.8	11.4	450
6	31.2	11.4	390
7	$31-2$	11.4	360
8	81.4	11.4	340
10	81.4	$7-8$	300
19	3	7.8	265
14	8	7.8	255
16	$23-4$	7.8	245
20	$21-2$	$7-8$	230
24	21.4	7.8	210

[^6]

PATENT INVOLUTE GEAR CUTTERS. CIRCULAR PITCH.

We furnish, at short notice, Cutters for cutting the tecth of Gear Wheels according to Circular Pitch.

Circular Pitch.	Diameter of Cutter.	Hole.	Price.
$1.8^{\prime \prime}$	$13.4{ }^{\prime \prime}$	$7.8^{\prime \prime}$	\$2 60
1.8	27.8	$11-4$	275
3.16	2	7.8	295
3.16	$27-8$	$11-4$	300
1.4	2	7.8	315
1.4	27.8	11.4	325
1.4	4 1-4	11.2 or 2	475
5-16	21.8	7.8	350
5-16	27.8	11.4	375
5.16	41.4	11.2 or 2	500
3.8	$21-2$	11.16	390
3.8	27.8	11.4	425
3.8	4 1-4	11.2 or 2	500
7-16	$25-8$	11.16	410
7.16	$31-2$	$11-4$	450
7.16	41.4	11.2 or 2	525
1.2	23 -4	11.16	440
1.2	31.2	11.4	475
1.2	41.4	11.2 or 2	550
9.16	31.8	11.4	470
9-16	$31-2$	11.4	500
9-16	4 1-4	$11-2$ or 2	600
5.8	31.8	11.4	500
5.8	$31-2$	11.4	525
5-8	$51-4$	11.2 or 2	650
11.16	31.4	11.4	550
11.16	$31-2$	11.4	575
11-16	51.4	11.2 or 2	700
3-4	3 3-8	11.4	600
$3 \cdot 1$	4	11.4	625
3.4	5 1-4	$11-2$ or 2	800
13.16	3 5-8	11.4	650
$13-16$		11.4	650
13-I6	5 1-4	11.2 or 2	860
7.8	3 5-8	11.4	675
7.8	4	11.4	675
$7-8$	51.4	11.2 or 2	825

PATENT INVOLUTE GEAR CUTTERS, Circular Pitch-Continued.

Circular Pitch.	Diameter of Cutter.	Hole.	Price.
15-16 ${ }^{\prime \prime}$	$37.8^{\prime \prime}$	$11.4{ }^{\prime \prime}$	\$700
15-16	4	11.4	725
15-16	51.4	11.2 or 2	850
1	37.8	11.4	750
1	43 -4	114	800
1	$51-4$	11.2 or 2	850
11.8	4	11.4	950
11.8	$43-4$	11.4	950
11.8	$51-4$	11.2 or 2	1000
11.4	41.4	11.4	1050
11.4	43.4	11.4	1050
11.4	61.4	11.2 or 2	1200
$13-8$	41.2	11.4	1175
13.8	$43-4$	11.4	11.75
13.8	61.4	11.2 or 2	1275
11.2	5	11.4	1250
11.2	$61-4$	11.2 or 2	1450
13 -4	$53-4$	11.2	1850
13.4	61.4	11.2 or 2	1850
2	$61-2$	11.2	2450
2	$71-4$	11.2 or 2	2650
2 1-4		11.2	2850
21.4	$71-4$	$11-2$ or 2	2900
212	71.4	11.2	3200
$21-2$	$71-4$	11.2 or 2	3200
23 -4	8	$11-2$ or 2	3500
3	8	11.2 or 2	3800

KREP CUTTERS SHARP.

FORMULAS FOR DETERMINING THE DIMENSIONS OF GEARS BY METRIC PITCH.

Module is the pitch diameter in mm. divided by the number of teeth in the gear.

Pitch diameter in mm. is the Module multiplied by the number, of teeth in the gear. $\mathrm{M}=$ Module.

I' $=$ The pitch diameter of gear.
I) = The whole diameter of gear.
$\mathbf{N}=$ The number of teeth in gear.
$D^{\prime \prime}=$ The working depth of teeth.
$t=$ Thickness of teeth on pitch line.
$f=$ Amount added to depth for clearance. Then
$\mathbf{M}=\frac{D^{\prime}}{N^{\prime}}$ or $\frac{\mathrm{D}}{\mathrm{N}+2}$
$\mathrm{D}^{\prime}=\mathbf{=} \mathbf{N}$ M.
$\mathrm{D}=(\mathrm{N}+2) \mathrm{M}$.
$\mathrm{N}=\frac{\mathrm{D}^{\prime}}{\mathrm{M}}$ or $\frac{\mathrm{D}}{\mathrm{M}}-2$.
$\mathrm{D}^{\prime \prime}=2 \mathrm{M}$.
$\mathrm{t}=\mathrm{M}_{1.5708 .}$
$\mathrm{f}=\frac{\mathrm{M}_{1.5708}^{10}}{10}$
The Module is equal to the part marked " S " in cut, measured in mm . and parts of mm .

PITCHES COMMONLY USED.

Module in Millimetres.

PATENT

METRIC INVOLUTE CUTTERS

For Teeth of Gear Wheels.

Abstract

We are prepared to furnish, at short notice, cutters for catting the teeth of Gear Wheels according to the Metric system. Module is the Pitch Diameter in m / m divided by the number of teeth in the gear. Pitch Diameter in m / m is the Module multiplied by the number of teeth in the gear. $\mathrm{M}=$ Module. $\mathrm{D}^{\prime}=$ Pitrl Diameter in m / m. $\mathbf{N}=$ No. of Teeth'in Gear. $\quad \mathbf{D}^{\prime}=\mathbf{M} \times \mathbf{N}$. For example: $M=3.50 \mathrm{~m} / \mathrm{m} ; \mathrm{N}=100 ; \mathrm{D}^{\prime}=3.50 \times 100=$ $350 \mathrm{~m} / \mathrm{m}$. For further explanation see page 270 .

Module in First Column.

Module.	Diameter.	Hole.	Price.
$1.2 \mathrm{~m} / \mathrm{m}$	$13-4{ }^{\prime \prime}$	$7.8^{\prime \prime}$ or $22 \mathrm{~m} / \mathrm{m}$	\$1 80
3-4	13.4	"6	180
1	13.4	"	210
11.4	17.8	"	230
11.2	$115-16$	"	245
$13-4$	2	"	255
2	2	"	265
21.4	21.16	"	275
21.2	21.8	"	300
3	$\begin{array}{ll}2 & 1-2\end{array}$	$11-16^{\prime \prime}$ or $27 \mathrm{~m} / \mathrm{m}$	340
31.4	$29-16$	"	350
31.2	29.16	"	360
33.4	23.4	"	375
4	23.4	"	390
41.4	3	11.4 " or $32 \mathrm{~m} / \mathrm{m}$	405
41.2		"	420
43 -4	3116	"	435
5	$311-16$	"	450
51.4	31 1-4	"	475
51.2	31.4	"	500
53.4	33.8	"	525
6	3 3-8	"	550
7	3 9-16	"	625
8	3 13-16	"	700
9	4	"	900
10	41.4	"	1000
11	$41-2$	" 6	1125
12	5	"	1250

Eight Cutters made for each Pitch; see page 262. KEEP CUTTERS SHARP.

PATENT METRIC INVOLUTE CUTTERS FOR TEETH OF GEAR WHEELS. FOR USE ON

 No. 3 Automatic Gear Cutting Machines. Module in First Column.| Module. | Diameter. | Hole. | Price. |
| :---: | :---: | :---: | :---: |
| $8.4 \mathrm{~m} / \mathrm{m}$ | 2 1-4" | $1^{\prime \prime}$ | \$200 |
| 1 | $21-4$ | 6 | 210 |
| 11.4 | $23-8$ | 4 | 230 |
| 11.2 | 21.2 | " | 245 |
| 18.4 | $21-2$ | 4 | 255 |
| 8 | $25-8$ | \% | 265 |
| 2 1-4 | $25-8$ | 4 | 275 |
| 21.8 | $23-4$ | 4 | 300 |
| 8 | 27.8 | * | 340 |
| 31.8 | $27-8$ | ${ }^{4}$ | 869 |
| 4 | 8 | ${ }^{4}$ | 890 |
| 41.8 | 8 1-8 | * | 420 |
| | 81.4 | 4 | 450 |
| 51.8 | 83.8 | * | 500 |
| 6 | 31.2 | " | 550 |

FOR USE ONT
 NTo. 4 Automatic Gear Cutting Machines. Module in First Column.

Module.	Diameter.	Hole.	Prioe.

Eight Cutters made for each pitch; see page $\mathbf{2 6}$? KEEP CUTTERS SHARP.

patent

METRIC INVOLUTE CUTTERS

 FOR TEETH OF GEAR WHEELS.FOR USE ON
No. 5 Automatic Gear Cutting Machines. Module in First Column.

Module.	Diameter.	Hole.	Price.
$21.2 \mathrm{~m} / \mathrm{m}$	$812{ }^{\prime \prime}$	11.2 "	*375
	31.2		425
31.2	85.8	"	450
4	$33-4$	"	475
41.2	3 7-8	"	500
5	4	"	525
$51-2$	41.8	"	575
6	41.4	"،	625
7	43.8	"'	725
8	43.4	"	800
9 10	${ }_{5}^{4} 3.4$	"	${ }^{9} 50$
10	${ }_{5}^{5} 1.2$	"	1050 1225
12	53.4	"	13.50

FOR USE ON

No. 6 Automatic Gear Cutting Machines. Module in First Column.

Module.	Dlameter.	Hole.	Price.
$3 \mathrm{~m} / \mathrm{m}$	$4^{\prime \prime}$	$134^{\prime \prime}$	\$500
31.2	41.8	"،	525
4.2	41.4	"'	550
$41-2$	43.8	"	575
	43.8	"	575
51.2	41.2	"	625
6	45.8	"	
7	478	"	775
8	51.4	"	850
9	51.2	"	1000
10	$53-4$	"	1100
12	61.4	"	1400

Eight Cutters made for each pitch. See page 262. KEEP CUTTRRS SHARP.

IMPROVED STOCKING CUTTERS FOR INVOLUTE GEARS.

Diametr Pitch.	Dismeter of Cutter.	Size of Hole in Cutter.	Price of Fach Cutter.
*1 1-4	$71-4{ }^{\prime \prime}$	$11.2^{\prime \prime}$	\$19 20
*11.2	$61-2$	11.2	1440
*13-4	$53-4$	11.2	1110
2	5	11.4	750
*2 1-4	41.2	11.4	675
21.2	41.4	11.4	600
*2 3 -4	4	11.4	540
3	3 7-8	11.4	420
*3 1-4	3 3-4	11.4	390
*3 1-2	$35-8$	11 -4	375
*3 3-4	$\begin{array}{ll}3 & 1.2\end{array}$	11.4	360
4	33.8	11.4	330
*4 1.2	31.4	11.4	300
	$31-8$	11.4	270
*5 1-2	$27-8$	11.4	250
6	$23-1$	11.16	235
7	258	11.16	220
8	212	11.16	205

Cuttere marked * are not kept in stock butare made to order.
List continued on next page.

IMPROVED STOCKING CUTTERS.

FOR USE ON
No. 3 Automatic Gear Cutting Machines.

Diametral Pitch.	Diameter of Cutter.	Hole.	Price.
*4	31.2	$1^{\prime \prime}$	\$3 30
* $\downarrow 1.2$	3 3-8	1	300
5	$31-4$	1	270
*5 1.2	31.8	1	250
6	3	1	235
7	2.7 .8	1	220
-	27.8	1	205

FOR USE ON
No. 4 Automatic Gear Cutting Machines.

1) iametral Pitch.	Diameter of Cutter.	Hole.	Price.
*3	$41.4^{\prime \prime}$	11.4 "	\$450
*3 1 2	4	11.4	405
4	33.4	11.4	360
* 412	3 3-4	11.4	330
5	35.8	11.4	315
* 112	$35-8$	11.4.	300
*	31.2	11.4	285
7	33.8	11.4	270
s	31.4	11.4	255

('utters marked*:ire notkeptin stock, but are made to order. List continued on next page.

IMPROVED STOCKING CUTTERS-Continued. .

FOR USE ON

No. 5 Automatic Gear Cutting Machines.

Diametral Pitch.	Diameter of Cutter.	Hole.	Price.
*2	$53.4{ }^{\prime \prime}$	11.2	$\therefore 10$
*2 1.4	51.	11.	73.
*2 1-2	5	11.2	(931)
*23-4	$43-4$	11.3	580
3	43.4	11.2	4 NH
*31.4	41.2	11.2	4 (\%)
*31.2	$43-8$	11.2	435
*3 3-4	41.4	11%	40.5
4	414	11.2	3%
* 1 1-2	41.8	112	34.5
\%	4 -8	11.2	315
*5 1-2	3 7-8	11.2	$3(N)$
$\underline{6}$	3 3-4	11.2	\because
7	3 5-8 \|	112	$\because 71$
*	312	11.2	2%

FOR USE ON

No. 6 Automatic Gear Cutting Machines.

Diametral Pitch.	'Diameter of Cutter.			Hos.	Price.
* 13.4	,	6 1.9"		$13-4{ }^{\prime \prime}$	\$ 1110
2		61 -4		13.4	$\times 40$
*.2 1-4		6	-	13.4	7 (i)
21.2		5 3-4		13 -4	(; (1)
*-3-4		51.2		13.1	(; (1)
3	1	$51-4$		134	510
*31.4		51.8	1	134	4 !.
*31.2		4 - ${ }^{\text {- }}$		13.4	465
*3 3.4		4 3-4		13.4	435
4	,	$45 . \mathrm{K}$		13.4	40.5
*41.2		41.2		13.4	37
5		43.8	+	13.4	34.5
*5 1-2	1	43 -8		13.4	345
6		41.4		13.4	330
*-		41.8		13.4	315
* 8		4] 3.4	300

[^7]
PATENT EPICYCLOIDAL CUTTERS

 FOR TEETH OF GEAR WHEELS.Which can be Sharpened by Grinding without Changing their Form.

We furnish Cutters of Epicycloidal form, which are sharpened upon the face the same as the Involute Cutters. As gears of this form of teeth to run well must be cut accurately to the proper depth that the pitch lines may coincide, we make the cutters with a shoulder (see cut above), which determines the exact depth that the tooth should be cut. Care taken in sizing the blanks obriates the necessity of any measurements in cutting the teeth. The Cutters are made for either diametral or circuiar pitches and the same rules apply in finding the diameters of blanks as in our system of In rolute teeth, i.e., 2 pitches added to the diameter at pitch line. See formulas, pages 305 to 308 , and tables showing corresponding circular and diametral pitches, page 284.
These Cutters will cut gears which are interchangeable.
The white line on edge of the two left hand upper teeth of cut represents a centre line on the cutter teeth, which may be a convenience in setting the cutter central.
The Cutters are marked with letters from A to X, isy which they may be ordered. See following table for dimensions of Cutters and page 261 for directions cte.

PATENT EPICYCLOIDAL CUTTTERS

For Teeth of Gear Wheels.
All Gears of same Pitch cut with these Cutters are interchangeable.

Diametral Pitch.	Diameter of Cutter.	Size of Hole In Cutter.	Price of Fact Cutter.
		$11.4^{\prime \prime}$	*15 50
*2	51 41.2	111.4	1400
*2 1-4	41.4	11.4	1310
*2 1.2	4	11.4	11.5
3	313.16	$11-4$	10.75
*31.2	39.16	11.4	680 600
4	$\begin{array}{ll}3 & 3.8 \\ 3 & 1\end{array}$	114	565
5	31.16	11.16	465
6	213.4 29.16	11.16	440
$*$	29.16 212	$\begin{array}{ll}1 & 1.16\end{array}$	350
8	212 2	11.16	365
*9	2 1-8	7-8	340
10	2	7-8	3211
*12	2	T-8	300
*14	115.16	7.8	28

Cutters marked * are not kept in stock, but are made to oriler.
Cutters are Marked with Letters
${ }_{24}$ Cutters in Each Set.

CUTTERS FOR MITRE AND BEVEL GEARS.

Diametral Pitch	Diam. of Cutter.	Hole in Cutter.	Prioe of each Cutter
4	3 3-8"	$11.4 \prime$	\$5 50
5	31.16	11.4	450
6	$23-4$	11.16	390
7	29.16	11.16	360
\%	21.2	11.16	340
10	21.8	7.8	300
12	2	$7-8$	265
14	2	7.8	255
16	115.16	$7-8$	245
20	17.8	$7-8$	230
24	$13-4$	7-8	210

These cutters are carried in stock.
Cutters for pitches not given in the above list will be made to order.
These cutters are thin enough to cut any bevel gear whose tooth face is not longer than one-third the distance from its outer end to the point where the shaft centre lines meet. This makes the tooth thickness at the inner end not less than two-thirds that at the outer end.
In ordering cutters for Bevel Gears, if the number of teeth in each gear, the pitch and length of face are given, also the angle of the shafts, if different from a right angle, we can select the proper cutter to send.

When an extra length of face is wanted, requiring an especially thin cutter, this length should be specified in the order.

Eight cutters are made for each pitch and numbered from 1 to 8.

As the number of teeth in the bevel gears to be cut with each cutter will not always agree with the list on page 262. the number of cutter must be found for each pair of gears to be cut according to the following diagram or formula.

Measure the back cone radius $a b$ for the gear, or $b c$ for the pinion. This is equal to the radius of a spur gear, the number of teeth in which would determine the cutter to use. Hence twice $a b$ times the diametral pitch equals the number of teeth for which the cutter should be selected for the gear. Looking in the list on page 262 the proper number for the cutter can be found.

Thus, let the back cone radius $a b$ be $4^{\prime \prime}$ and the diametral pitch be 8. Twice 4 is 8 and 8×8 is 64 , from which it can be seen that the cutter must be of shape No. 2, as 64 is between 55 and 134, the range covered by a No. 2 cutter.

The number of teeth for which the cutter should be selected can also be found by the following formula :

$$
\text { Tan. } \alpha=\frac{\mathrm{Na}}{\mathrm{Nb}}
$$

No. of teeth to select cutter for gear $=\frac{\mathrm{Na}}{\operatorname{Cos} . \alpha}$
No. of teeth to select cutter for pinion $=\frac{\mathrm{Nb}}{\sin . \alpha}$
If the gears are mitres or are aiike, only one cutter is needed; if one gear is larger than the other, two may be necded.

Additional helps on this subject can be found in B. \& : " Practical Treatise on (iearing," and "Formulas in Gearing."

THE SIZING AND CUTTING OF

GEAR WHEELS.

The word "diameter", when applied to gears, is always understood to mean the pitch diameter.

Diametral pitch of the gear is the number of teeth to each iuch of its pitch diameter.

If a gear has 40 tecth and the pitch diameter is 4 Inches, there are 10 teeth to cach inch of the pitch diameter, and the dliametral pitch is 10, or in other words, the gear is 10 diam. etral pitch.

Circular pitch is the distance from the centre of one tooth to the centre of the next tooth, measured along the pitch circle.

If the distance from the centre of one tooth to the centre of next tooth, measured along the pitch circle, is 1.2 inch. the gear is 1.2 inch circular pitch.

The diametral pitch given, to obtain the circular pitch, divide 8.1416 by the diametral pitch.

If the diametral pitch is 4, divide 3.1416 by 4 , and the quotient, 7854 inch, is the circular pitch.

The circular pitch given, to oltain the diametral pitch, divide 8.1416 by the circular pitch.
If the circular pitch is 2 inches, divide 3.1416 by 2 and tho quotient, 1.5708 , is the diametral pitch.
The number of teeth and the diametral pitch given, to oltain the pitch diameter, divide the number of teeth by the diametral pitch.

If the number of teeth is 40 , and the diametral pitch is 4 , divide 40 by 4 , and the quotient, 10 , is the pitch diameter.
The number of teeth and the diametral pitch given, to obtain the whole diameter or size of blank of gear, add 2 to the number of teeth and divide by the diametral pitch.

If the number of teeth is 40 , and the diametral pitch is 4 , add 2 to the 40, making 42, and divide by 4; the quotient, $101-2$, is the whole diameter of the gear or blank.

The number of teeth and the diameter of the blank given, to obtain the diametral pitch, add 2 to the number of teeth, and divide by the diameter of the blank.

If the number of teeth is 40 , the diameter of the blank is 101.2 inches, add 2 to the number of tecth, making 42, and divide by 101.2; the quotient, 4 , is the diametral pitch.

The pitch diameter and the diamotral pitch given, to obtain the number of teeth, multiply the pitch diameter by the diametral pitch.
IIf the diameter of the pitch circle is 10 inches, and the diametral pitch is 4, multiply 10 by 4, and the product. 40 . will be the number of teeth in the gear.

SThe whole diameter of the blank and the diametral pitch given, to obtain the number of teeth in the gear, multiply the diameter by the diametral pitch and subtract 2.

If the whole diameter is $101-2$, and the diametral pitch is 4, multiply $101-2$ by 4, and the product, 42 less 2 , or 40 , is the number of teeth.

The thickness of a tooth at the pitch life is found by divid. ing the circular pitch by 2 , or divide 1.57 by the diametral pitch.

If the circular pitch is 1.047 Inch, or the diametral pitch is 3, divide 1.047 by 2 , or 1.57 by 3 , and the quotient; . 523 inch, is the thickness of tooth.

The whole depth of a tooth is found by dividing 2.157 by the diametral pitch.

If the diametral pitch of a gear is 6 , the whole depth is 2.157 divided by 6 , equals .3595 .

The whole depth of a tooth is about 11-16, or exactly $\mathbf{6 8 6 6}$ of the circular pitch.

If the circular pitch is 2 , the whole depth of tooth is about 11-16 of 2 inches, or $13-8$ inches nearly.

The distance between the centres of two gears is found by adding the number of teeth together, and dividing half the sum by the diametral pitch.
If two gears have 50 and 80 teeth, respectively, and are 5 pitch, add 50 and 80 , making 80 , divide by 2 , and then divide the quotient, 40, by the diametral pitch, 5 , and the result, 8 inches, is the centre distance.

To facilitate the measurement of wheels to be sized nccording to diametral pitch, either of the following steel rules described can be used. No. 61 is a twelve inch rule containing four lines of graduations upon each side, one each as follows: 18ths, 20ths, 22nds, 24ths, 26ths, 28ths, 80 ths and 32nds. Each line of graduations is figured the whole length of the rule, $10,20,80, \& c$. Suppose a wheel of $\mathbf{6 0}$ weth of 20 pitch is to be sized, then find 60 on the line of 20ths and that is the pitch diameter of the required wheel; then add two of the divisions to make the outside diameter which is sixty-two twentieths. No. 78 is also a 12 -inch rule having one iuch only of graduationson each end as follows: 6ths, 7ths, 8ths, 9 ths, 10 ths, 11 ths, 12ths, 14ths, 16 ths, 18 ths, 20ths, 22 nds, 24 ths, 26 ths, 28 ths, 80 ths, $82 n d s, 84$ ths, 86 ths, 38ths. The intermediate ten inches are blank, except that the inch lines are made clear across the rule. Suppose a Wheel of 83 teeth of 10 pitch is to be sized, then take 8 of the blank inches and three of the 10 th graduations and that gives the pitch diameter of the required wheel, add two of the tenths which gives the outside diameter which is eight and five-tenths inches.
This rule furnishes graduations for a large variety of pltches and is the beat adspted for the use for which it is designed. In adg'mare are made 12 and 24 inch rules with No. 5 ?

1st corner, 11, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25.
2nd " 16, 32, 64 .
8rd \quad " $\quad 28,27,28,29,30,31,33,34,35,36,37,38$.
4th " $39,40,41,42,43,44,45,46,47,48,49,59,100$.
ON PAGES 805 TO 303, FORMULAS AND EXAMPLES A RE GIVEN FOR ALL CALCULATIONS REQUIRED IN CONNECTION WITH SIZE AND PITCH OF WHEELS. For prices of Steel Rules described on preceding page, see page 397.

No. 1 table shows the diametral pitches with the corresponding circular pitches.
No. 2 table shows the circular pitches with the corre. monding diametral pitches.

table No. 1.		TABLE No. 2.	
Diametral Pitch.	Circular Pitch.	Circular Pitch.	Diametral Pitch.
11.4	$2.5133^{\prime \prime}$	$2{ }^{\prime \prime}$	1.571
11.2	2.0944	17.8	1.676
13.4	1.7952	$13-4$	1.795
2	1.571	15.8	1.933
21.4	1.386	11.2	2.094
21.2	1.257	17.16	2.185
23.4	1.142	13.8	2.285
3	1.047	15.16	2.394
31.2	. 898	11.4	2.513
1	. 785	13.16	2.646
5	. 628	11.8	2.793
6	. 524	11.16	2.957
7	. 449		3.142
8	. 393	15-16	3.351
9	. 349	7-8	8.590
10	. 314	13-16	3.867
11	. 288	$3-4$	4.189
12	. 262	11-16	4.570
14	. 224	5 -8	5.027
16	¢196	9.16	5.585
18	. 175	$1-2$	6.283
20	. 157	7-16	${ }^{7} .181$
22	. 143	3-8	8.378
24	. 131	5.16	10.053
28	. 121	1.4	12.566
28	. 112	3.16	16.755
30	. 105	1.8	25.133
32	. 098	1-16	50.268
36	. 087		
40	. 079		
48	. 065		

According to the system adopted by the Brown \& Sharpe Mfg. Co., any wheel of one pitch will gear into any other wheel or into a rack of the same pitch. Eight cutters are required for each pitch. These elght cutters are adapted to cut from a pinion of twelve teeth to a rack, a nd are numbered respectively, $1,2,3, \& c$. The number of teeth and the pitch for which a cutter is adapted is also marked on each

If a cutter is wanted for a wheel of 40 teeth of 8 pitch, then the cutter required, would be No. 3 of 8 pitch, inasmuch as a No. 3 cutter will cut all wheels containing from 35 to 54 teeth, inclusive, and 40 occuring between those numbers, that is the one desired. It should be borne in mind that eight different cutters are required in order to cut all the wheels of any given pitch. Directions for the use of these cutters will be found upon pages 261 and 262. Special attention is called to the clause upon page 262 in relation to depth of space.

As these cutters allow of being ground when dull, it is important that they be kept sharp. By paying particular attention to this the cutting will be greatly facilitated beside being much better done.

It is desirable in applying gearing of any kind, to avold having wheels or pinions with a small number of teeth. Pinions of twelve teeth will work very well but a less number of teeth should not be used.

Few mechanics are familiar with the minutiae of gearing and the necessity of exact sizing of wheels, as to diameter, is often overlooked. Special care is required also to know that the distance of the centres of two wheels running together is correct relatively to the diameters.

TABLE showing Depth of Space and Thickness of Tooth in Spur Wheels, when cut with our Patent Cutters.

Pitch of Cutter	Depth to be cut in Gear.	Thickness of Tooth at Pitch Line.	Pitch of Cutter	Depth to be cut in Gear.	Thickness of Tooth at Pitch Line.
$11-4$	$1.726^{\prime \prime}$	1.257'	11	.196*	.143"
$11-2$	1.488	1.047	12	. 180	. 131
$13-4$	1.233	. 898	14	. 154	. 112
2	1.078	. 785	16	. 135	. 098
$21-4$. 958	. 697	18	. 120	. 087
$21-2$. 863	. 628	20	. 108	. 079
23 -4	. 784	. 570	22	. 098	. 071
8	. 719	. 523	24	. 090	. 065
$31-2$. 616	. 448	26	. 083	. 060
4	. 539	. 393	28	. 077	. 056
5	. 431	. 314	30	. 072	. 052
6	. 359	. 262	32	. 067	. 049
7	. 308	. 224	36	. 060	. 044
8	. 270	. 196	40	. 054	. 039
9	. 240	. 175	48	. 045	. 033
10	. 216	. 157			

TOOTH FLANKS UNDERCUT.

Fig. 1 .

Fig. 2.

TOOTH FLANKS UNDERCUT.

It is well known that involute gears can be made of different systems or of different angles of obliquity or pressure. In the system proposed by Professor Willis alout ifty years ago, which we adopted thirty years ago. the angle of pressure, or obliquity, is fourteen and a half degrees. Twice this angle is the familiar angle of a worm thread tool the same as eeen in our gauge, on page 441. Gears made upon this system are thought to crowd less upon their shafts than those having a greater angle of pressure. If, however, a gear or pinion has fewer than twelve teeth, this angle may cause their flanks to be undercut and in consequence weak in order to clear the faces of an engaging gear. The cut of a segment of a gear of ten teeth, four dianetral pitch, Fig. 1, illustrates this undercutting which is greater as the teeth are fewer.

Gears or pinions, having fewer than twelve teeth might be unarailable if undercut as much as at A, B and C, in the illustration Fig. 1. Hence, gears that are to do heavy work may require a greater angle of pressure than fourteen and a half degrees, if they are to run with a pinion of fewer than twelve teeth.

If a different angle is required, special cutters will have to be made at an extra cost.

In the choice of an angle of pressure some help may be obtained from Fig. 2, which is taken from a gear 10 teeth, 4 pitch. The angle of pressure in these teeth is 2.21 .2 . The greater strength of the tooth flanks in this figure is readily seen. The angle cannot be much more than thirtytwo degrees and have the addendum of the teeth of the ordinary height, which is equal to one of the diameter pitches or the module.

COMPARATIVE SIZES OF GEAR TEETH.
 Involute.

18 P

16 P

14 P

10 P

9 P

8 P

289

7 P

6 P
-

KEEP CUTTERS SHARP.

This Cutter has cut 467,4 pitch, 64 teeth, $3^{\prime \prime}$ face cast iron gears, making a total length of cut of 7472 feet. The teeth of the gears were cut from solid blanks, and finished at one cut. This record, while good, is not exceptional, and serves to show the great economy of keeping cutters sharp.

WORM WHEEL CUTTERS.

Cutters of any given diameter and pitch for Cutting Worm Wheels are made to order. In ordering Cutters for Worm Wheels, give the number of teeth in wheel, the diameter os worm and number of threads to the inch.

SPECIAL GEAR CUTTERS.

Worm Wheel Cutters and Cutters of special dimensions are made to order at suecial prices.

Spur and Bevel Gear Cutters, shown in lists, when ordered with special size hole, are made to order at an advance of fifty cents each on list price. If six or more of one pitch ars ordered with special size hole, the list price is charged.

WORM HOBS

With Relieved Teeth.

We are prepared by the use of special machinery, to make Worm Hobs of any size, the tecth of which can be ground on their faces without changing their form.

By our method of relieving hobs, they cut as freely as milling cutters and are sharpened in the same manner as our formed milling cutters.

We usually make the hobs a sufficient amount larger than the worm to give clearance to the top of the teeth and to allow a reasonable amount for the grinding of the teeth without reducing the diameter of the hul to less than that of the worm.

Ordering Hobs. In ordering hobs the following data should be given: the outside diameter of the worm, number of teeth in worm wheel, the lead, i.e., the adrance to one turn, whether the thread is single, double etc., right or left hand, diameter of hole, size of key-way and material to be cut, also whether the wheel to be hobbed is driven by the hol or by the hobbing machine spindle.

If the nature of the work requires a hob of exact diame. ter, it should be plainly stated when ordering, otherwise the allowance mentioned above will be added.

LIST OF WORM HOBS.

The following is a list of the hobs we have on hand to hob worm wheels.

These Hobs are not for sale, but are kept on hand for the convenience of our customers.

Customers will find it to their advantage as to time and expense, in ordering worm wheels for us to hob, if they can make use of these hobs.

In this list
Lead $=$ advance in one revolution.
Pitch, P^{\prime}, and Lead of single hobs are equal.
Pitch, P^{\prime}, of double hob $=1-2$ the lead.
Turns per inch $=1$ divided by lead.

WORM.
$\mathrm{B}=.31 \mathrm{P}^{\prime}$.
$\mathrm{D}^{\prime \prime}+\mathrm{f}=.6866 \mathrm{P}^{\prime} . \quad \mathrm{S}=.3183 \mathrm{P}^{\prime}$.
Single Threaded.

Lead.	Turns per Inch.	Right or Left.	Diam. of Worm.	Pitch P'.	$\begin{aligned} & \text { Pitch } \\ & \text { Diam. of } \\ & \text { Worm. } \end{aligned}$
. 050	20	R	.3125) ${ }^{\prime \prime}$. 0500	.2807"
. 100	10	\mathbf{R}	. 625	. 1000	. 5614
.100	10	L	. 625	. 100	. 5614
. 100	10	R	. 750	. 1000	. 6864
. 100	10	L	. 7337	. 1000	. 6700
. 100	10	R	1.676	. 1000	. 6124
. 125	8	R	. 573	. 125	. 4934
. 125	8	R	. 875	. 1250	. 7954
. 125	8	L	1.00	. 1250	. 9204
. 125	8	R	1.00	. 1250	. 9204
. 125	8	R	1.270	. 1250	1.1904
. 133	71.2	\mathbf{R}	1.00	. 1333	. 9152
. 133	71.2	R	1.1250	. 1333	1.0402
. 143	7	R	. 690	. 1428	. 5990
. 150	62.3	R	1.215	. 150	1.1196
. 154	6.536	R	1.125	. 1538	1.0276
. 156	62.5	L	1.288	. 1562	1.1886
. 166	6	R	. 875	. 1666	. 7688
. 166	6	R	1.00	. 1666	. 8938
. 168	6	L	1.00	. 1666	. 8938
. 166	6	R	1,204	1666	1.0978

Lead.	Turus per Inch.	Right or Left.	Diam. of Worm.	Pitch P^{\prime}.	Pitch Diam. of Worm.
. 166	6	R	1.25010	. 1666	$1.1438{ }^{\prime \prime}$
. 166	6	I.	1.400	. 1666	1.2938
. 166	6	R	1.500	. 1666	1.3940
. 166	6	12	1.625	. 1666	1.5188
. 166	6	L,	1.625	. 16866	1.5188
. 166	6	I,	1.750	. 16666	1.6438
. 166	6	12	2.	. 1666	1.8938
. 166	6	12	2.056	. 1666	1.9498
. 1665	6	12	2.109	. 1666	2.0028
. 166	6	R	2.15625	. 1666	2.0500
$\therefore 2(1)$	5	R	1.00	. 2000	. 8726
.210	5	I,	1.250	.2000	1.1226
.2()	5	12	1.250	.2000	1.1226
.200)	5	L	1.480	. 2000	1.3526
.2()	5	k	1.510	.2000	1.3726
.20010	\%	R	1.5625	. 2000	1.4351
.20)	\%	R	1.750	. 2000	1.6226
.20)	5	R	1.9375	. 2000	1.8101
.200)	5	I,	2.000	. 2000	1.8727
.22:2	41.2	L	. 974	.2222	. 8326
-222	41.2	12	1.250	. 2422	1.1086
-2人)	41.2	12	1.397	. 22222	1.2556
- 2 2	41.2	IR	1.437	.22222	1.2956
.2:2	41.2	R	1.500	.2222	1.3586
-22	41.2	L	1.500	. 22222	1.3586
-222	41.2	R	1.750	. 2222	1.6086
± 22	41.2	\mathbf{R}	1.88	. 2222	1.7386
.2-2	41.2	I	1.88	.$\therefore 222$	1.7386
- 2\%2	41.2	R	2.	. 2222	1.8586
.222	41.2	L	2.	.2222	1.8586
.222	41.2	R	2.375	. 22222	2.2336
. 235	4.255	R	2.375	. 2353	2.2254
. 250	4	L	1.	. 2500	. 8410
. 250	4	R	1.0625	. 2500	. 9083
-2.5)	4	R	1.250	. 2500	1.0908
.25)	4	L	1.399	. 25500	1.2399
\therefore 20)	4	L	1.250	. 2500	1.0908
.250	4	L	1.500	. 2500	1.3408
-20)	4	R	1.500	. 2500	1.8408
.201	4	R	1.5625	. 2500	1.4083
.250	4	L	1.625	. 2500	1.4658
. 250	4	R	1.625	. 2500	1.4658
.20)	4	R	1.7187	. 2500	1.5088
.250	4	R	1.750	. 2500	1.5808
-20)	4	L	1.750	. 2500	1.5908
.250	4	R	$\underline{9}$.	. 2500	1.8408
.250	4	L	2.	. 2500	1.8408
.250)	4	R	2.025	. 2500	1.80\%8
.250	4	R	2.250	. 2500	$2.09+8$
.250	4	R	2.500	. 2500	$2.4+6$
.261s	3.820	R	1.521	. 26118	1.4.
$\therefore 286$	311:2	\mathbf{R}	1.467	. 2857	1.4
$.2 \times 6$	31.2	L	1.750	. 288	1.4
. 3×8	31.2	R	, $2.125 l e$. 288	14.4

Lead.	Turns per Inch.	Right or Left.	Diam. of Worm.	$\begin{gathered} \text { Pitch } \\ \mathbf{P}^{\prime} . \end{gathered}$	Pitch Diam. of Worm.
. 286	31.2	R	$2.500^{\prime \prime}$. 2857	$2.3182^{\prime \prime}$
. 300	31.3	1.	1.461	. 3000	1.2702
. 300	31.3	K	3.065	.3060	2.874
. 3125	3.2	L	1.75	.3125	1.5510
. 3142	3.183	1.	1.700	. 3142	1.5000
. 3142	3.1×3	R	2.	. 3142	1.8000
. 333	3	R	1.250	. 3333	1.0378
. 333	3	1.	1.532	.33333	1.3198
. 333	3	R	1.750	.3333:3	1.5388
. 333	3	R	1.908	. 3333	$1.6 \% 58$
. 333	3	1.	1.90N	.33333	1.6858
.:333	3	R	1.96\%	.33333	1.7558
. 333	3	R	1.97%	.333\%3	1.7648
. 333	3	R	2.250	. 33333	2.0378
. 333	3	L	6.250	.33333	$\underline{2.0378}$
. 333	3	K	2.50 (. 33333	2.2888
. 333	3	1.	2.500	. 33333	2.2888
. 333	3	R	3.	. 33333	2.7578
. 319	2.865	R	1.875	. 3491	1.65288
.353	2 10-12	12	2.250	.35i33	2.1 (1251
. 353	2 10-12	L	2.250	.35333	$\underline{0.1250}$
.375	22.3	R	1.125	. 3750	. $\times \times 62$
. 375	22.3	R	1.812.)	.3750	1.3737
. 375	22.3	1	1.875	.3750	1.6362
. 375	22.3	R	2050	. 3750	$\underline{2.0113}$
. 375	22.3	R	3.	. 3750	0.7612
. 380	2.632	\underline{L}	2.375	. 3810	2.1330
. 3427	2.546	R	2.000	. 3 +27	1.7500
. 3427	2.546	R	2.250	. 3 (2) ${ }^{2}$	2.000
. 3627	2.546	1.	$\underline{9.750}$. 342	2.500
. 3927	2.546	R	3.000	.322\%	2.750
. 3927	2.546	L.	3.000	. 3927	2.750
. 392	2.546	R	4.250	. 3927	4.0000
. 3927	2.546	L	4.250	. 3927	4.0000
. 3927	2.546	R	5.250	. 3927	5.000
.400	21.2	R	1.50	. 4000	1.2454
. 400	21.2	L	1.750	. 4000	1.4954
. 400	21.2	L	1.914	. 4000	1.6594
. 400	21.2	R	2.	. 4000	1.7454
. 400	21.2	L	2.125	. 4000	1.8704
.400	21.2	R	2.162	. 4000	1.9074
. 400	21.2	R	2.250	. 4000	1.9954
. 444	214	R	2.6875	. 4444	2.4047
. 444	21.4	L.	2.6875	. 4444	2.4047
. 44×8	2.228	R	4.000	. 4488	3.7148
. 70	2	E	1.537	. 5000	$1.21{ }^{\text {m }}$
. 500	$\underline{9}$	R	1.8125	. 5000	$1.4{ }^{-}$
. 50×10	\because	R	1.880	. 5000	1
. 500	\because	R	1.537	. 5000	
. 500	2	R	1.8125	. 5000	
. 500	2	R	1.880	. 5000	
. 500	2	R	2.0625	. 5000	1
. 500	2	R	2.112	. 5000	
. 500	2	L.	$2.18 \% 5$. 5800	1.

Lead.	Turns per Inch.	Right or left.	Diam. of Worm.	$\begin{aligned} & \text { Pitch } \\ & \mathbf{P}^{\prime} . \end{aligned}$	Piteh Diam. of Worm.
. 500	2	R	2.192"	. 5000	$1.8736^{\prime \prime}$
. 500	2	R	2.250	. 5000	1.9316
. 500	2	R	2.500	. 3000	2.1816
. 500	2	L	2.500	. 5000	2.1816
. 500	2	R	2.75	. 5000	2.4316
. 500	2	\mathbf{R}	3.	. 5000	2.6816
. 500	2	I,	3.	. 5000	2.6816
. 500	2	R	3.25	. 5000	2.9316
. 5236	1.9098	R	2.833	. 5236	2.5000
. 5236	1.9098	R	3.250	. 5236	2.9167
. 596	1.678	L	4.879	.59\%	4.5000
.62.)	13.5	R	2.0318	. 6250	1.6340
.625)	13.5	I.	2.951	.6250	2.5532
. 62.5	13.5	\mathbf{R}	3.500	. 6250	3.1022
.625	$13-5$	$1 /$	3.500	. 6250	3.1022
. 62×3	1.591	I,	$\because .75$. 6283	2.3500
.6283	1.591	R	3.000	. 6283	2.6000
. 632	1.583	R	4.9021	. 6317	4.5000
. 632	1.583	L	4.942	. 6317	4.5000
. 666	11.2	R	2.740	. 6666	2.3156
. 666	11.2	\mathbf{R}	$\because .750$. 6666	2.3256
. 714	12.5	R	3.	. 7143	2.5450
.750	11.3	R	2.725	. 7500	2.2476
. 750	11.3	R	$\because .896$.750	2.4185
.750	11.3	\mathbf{R}	2.977	.7500	$\underline{2.4996}$
.750	11.3	12	3.00	.7500	2.5226
. 750	11.3	R	3.075	.7500	2.5976
.750	$11-3$	R	3.625	. 7500	3.1476
.750	11.3	R	4.	.7500	3.5226
. 750	11.3	L	4.	. 7500	3.5226
.7854	1.273	\mathbf{R}	3.500	. 7854	3.0000
. 875	11.7	${ }_{1}$	5.208	. 878	4,6510
1.000	1	R	3.66	1.0000	30234
1.000	1	1.	3750	1.0000	3.1184
1.000	1	R	2.875	1.0000	2.2384
1.000	1	R	3.500	1.0000	2.808
1.000	1	R	3.886	1.0000	3.249
1.000	1	\mathbf{R}	4.218	1.0000	3.5614
1.125	8.9	R	5.01	1.1250	4.2938
1.250	4.5	R	3.5425	1.2500	2.707
1.250	4.5	IR	4.450	1.2500 1.2500	8.5-3
1.250	$4 \cdot 5$	R	5.375	1.2500	4040.
1.375	8.11	1	4.0625	1.3750 13750	\%
1.375	8.11	R	4.616	1.3750	-
1.500	2.3	R	4.865 5.400	1.5000 1.5000	
1.500	2.3	R	5.400	1.5000 1.5000	3
1.500	2.3	L	\%.454	1.5000	\%*
1.500	$2 \cdot 3$	R	7. 674	1.000	
1.500	$2 \cdot 3$	12	6.754	1.005	
1.625	8. 13	12	4.500	1.6	
1.625	8.13	1.	4.500	1.0	
1.750	4-7	12	5.763	1.4	
1.875	.5333	R	6.943	14ta	
2.000	1.2	12	5.491	2	

Lead.	Turns per Inch.	Right or Left.	Diam. of Worm.	$\begin{aligned} & \text { Pitch } \\ & \text { P' }^{\prime} . \end{aligned}$	Pitch Diam. of Worm.
2.000	1-2	\mathbf{L}	$5.750^{\prime \prime}$	2.10000	$4.4768^{\prime \prime}$
2.000	1-2	R	7.750	2.0000	6.4768

Double Threaded.

. 200	5	R	. $750{ }^{\prime \prime}$. 1000	.6864 ${ }^{\prime \prime}$
. 250	4	R	. 653	. 125	. 5734
. 333	3	R	2.250	. 1666	2.1438
. 400	21.2	R	1.125	. 2000	. 9977
. 400	21.2	R	1.250	. 2000	1.1227
. 400	21.2	R	1.45	. 2000	1.3226
. 400	$21-2$	L	1.480	. 2000	1.3526
. 400	$21-2$	L	2.	.2000	1.8726
. 444	$21-4$	R	1.125	. 222	. 9836
. 444	$21-4$	L	1.500	. 222	1.3586
. 144	$21-4$	L	2.	. 2222	1.8586
. 500	2	L	1.	. 2500	. 8408
. 500	2	R	1.0634	. 2500	. 9042
. 500	2	R	1.150	. 2500	. 9908
. 500	2	L	1.150	. 2500	. 9908
. 500	2	R	1.500	. 2500	1.3408
. 500	2 .	R	1.750	. 2500	1.5908
. 500	2	L	1.750	. 2500	1.5908
. 500	2	L	1.836	. 2500	1.6768
. 500	2	R	1.875	2500	1.7158
. 500	2	R	2.	. 2500	1.8408
. 500	2	R	3.485	. 2500	3.3258
. 5236	1.9098	R	2.500	. 2618	2.3334
. 571	13.4	R	1.250	. 2850	1.0681
. 571	$13-4$	R	1.500	. 2857	1.3182
. 625	$13-5$	R	1.250	. 3125	1.0512
. 625	$13-5$	L	1.250	. 3125	1.0512
. 625	13.5	L	2.405	. 3125	2.206
. 6288	1.591	L	1.700	. 3141	1.500
. 6288	1.591	R	1.700	. 3141	1.500
. 6283	1.591	L	2.200	. 3141	2.000
. 666	11.2	R	1.500	. 3333	1.2878
. 666	11.2	L	1.750	. 3333	1.5378
. 666	$11-2$	R	1.8750	. 3333	1.6628
. 666	11.2	R	2.000	. 3333	1.7878
. 666	11.2	L	2.000	. 3333	. 7878
. 666	11.2	L.	2.125	. 3333	1.9128
. 666	11.2	R	2.21		1.9978
. 666	11.2	R	2.750	838	2.5378
. 666	11.2	R	3.5133	\%	3.3709
. 6956	1.437	R	2.160		1.9386
. 7272	1.375	L	1.750		1.5186
. 750	11.3	R	1875		1.1862
. 750	11.3	R	2.40		2.0112
. 750	11.3	I			. 2.2612
. 750	113	R	2.50		-
. 762	1.312	R	2.4667		-

l.ead.	Turns per Inch.	Right or left.	Diam. of Worm.	$\begin{gathered} \text { Pitch } \\ \text { P. } \end{gathered}$	Pitch Diam. of Worm.
. 787	1.271	I.	$2.500^{\prime \prime}$.3934	$2.2496^{\prime \prime}$
. 800	11.4	12	1.500	.4000	1,2454
.800	11.4	L	2.250	.4000	2.2454
. 875	117	R	2.480	.4375	2.2014
. 888	11.8	I,	2.6875	.4440	2.4047
1.000	1	R	2.3180	.5000	2.000
1.000	I	R	2.750	. 500	2.4316
$1.000)$	1.	IR	8.000	. 5000	2.6816
1.250	4.7	R	3.3978	. 6250	3.0000
1.250	4.5	12	2.500	. 6250	2.1022
1.250	4.5	I.	2.500	. 6250	2.102%
1.250	4.5	1.	3.404	.6250	3.0061
1.256	.79\%)	1.	3.20	. 6280	2.8000
1.333	3.4	I,	2.750	. 6666	2.3256
1.333	8.4	İ	3.500	. 6666	3,0756
1.975	<.11	If	3.061	. 6875	2.6234
1.500	2.3	R	2.771	.7500	2.2936
1.500	28	R	2.875	.7500	2.3976
1.500	2-\%	$1:$	3.609	.7500	3.1316
1.500	2-3	1.	3.625	.7500	3.1476
].50)	$2-3$	I?	4.500	.7500	4.0225
$\because(0) 0$	1.2	I.	3.1875	1.0000	2.5509
2.000	1.2	I.	3.8125	1.0000	3.1759
2.0)00	1.2	IR	4.636	1.0000	4.0000
3.09,4	. 47%	I,	3.666	1.047	3.0000
2.500	- $)^{-1}$	R	4.450	1.250	3.6542
3.0000	1.3	I.	5.375	1.500	4.4202
3.000	1.3	I.	5.978	1.5000	5.0232
3.0001	1.3	12	5.978	1.5000	5.0280
3.500	2%	R	8.556	1.7500	7.4420

Triple Threaded.

.375	-2.3	I.	. $47686^{\prime \prime}$.125	.397"
. 375	$22-3$	R	1.125	.1250	1.0454
.500	2	1.	1.250	. 1666	1.1439
. 660	12.3	1,	1.500	. 2000	1.3726
. 6732	1.4×5	12	. 857	. 2244	. 7142
.750	11.3	I.	. 954	. 2500	. 7948
.750	11.3	I.	1.488	. 2500	1.3280
. 750	11.3	IR	1.500	. 2500	1.3406
. 750	11.3	IR	2.000	. 2500	1.8409
. 750	11.3	IR	2.698	. 2500	2.5389
. 857	11 -6	R	2.193	. 2857	2.0111
. 9423	1.0612	12	2.200	. 3142	2.0000
1.000	1.	R	1.500	. 3333	1.2878
1.000	1	I.	1.750	. 3333	1.5878
1000	1	R	2.000	. 3333	1.7878
1.000	1	I	2.000	. 3333	1.7878
1.00	1	1.	2.500	. 3333	2.2878
1.125	8.9	R	2.000	. 3750	1.7613
1.125	8.9	R	2.62	. 3750	2.8813
1.333	3.4	I.	2.000	. 4444	1.7172

Lead.	Turns per Inch.	Right or Left.	Diam. of Worm.	Pitch \mathbf{P}^{\prime}.	Pitch Diam. of Worm.
1.333	3-4	- \mathbf{R}	$2.625^{\prime \prime}$. 4444	$2.3422^{\prime \prime}$
1.500	2.3	L	2.250	. 5000	1.9316
1.500	$2 \cdot 3$	R	2.354	. 5000	2.0356
1.500	2.3	R	2.424	. 5000	2.1057
1.500	2.3	R	2.637	. 5000	2.3186
1.500	2.3	R	2.750	. 5000	2.4316
1.500	2.3	\mathbf{R}	3.	. 5000	2.6816
1.875	8.15	\mathbf{R}	3.500	. 62.5	3.1021 .
2.250	4.9	\mathbf{R}	3.625	. 7500	3.1480
3.000	1.3	R	8.500	1.0000	2.8634
3.000	1-3	R	4.085	1.0000	$3.4484{ }^{\text {- }}$
3.00	1.3	\mathbf{R}	4.960	1.000	4.3434
4. 5.5	. 296	\mathbf{R}	5.966	1.125	5.2500
4.125	. 242	R	4.500	1.3750	3.6246

Quadruple Threaded.

. 4654	2.148	\mathbf{R}	1:0236"	. 11635	. $9496{ }^{\prime \prime}$
. 800	11.4	L	1.125	. 2000	. 9977
. 9412	11.16	L	1.918	. 2353	1.7684
1.000	1	\mathbf{R}	1.500	.2500	1.3408
1.000	1	L	1.500	.2500	1.3108
1.000	1	I/	1.750	. 2500	1.5908
1.0472	. 9549	L	2.250	. 2618	20833
1.333	3-4	R	1.500	. 3333	1.2878
1.333	3-4	L	1.625	. 3333	1.4128
1.333	3-4	R	2.000	. 3333	1.7878
1.3333	$3-4$	L	2.000	. 3333	1.7878
1.335	3.4	R	2.500	. 3333	2.2878
1.143	7.8	R	1,250	. 2857	1,0682
2.000	1.2	R	2.750	. 5000	2.4316
2.000	1.2	R	3.000	. 5000	2.6816
2.000	$1-2$	L	3.000	. 5000	2.6816
2.5132	. 3978	L	3.150	. 6283	2.7500
2.666	3.8	R	2.674	. 6666	2.2500
2.666	3.8	R	2.6875	. 6666	2.2631
4.000	1.4	L	5.000	1.000	4.3633
6.000	1.6	R	4.500	1.5000	3.5450

Quintuple Threaded.

3.000	$1-3$	R	$2.625^{\prime \prime}$.5000
3.000	$1-3$	R	2.500	.500

INDEX PLATES.

Made and Drilled to Order.

We make to order Index Plates of any size, drilled as may be required. Dimensions required : outside diameter, distance from face to bottom of hub, outside diameter of hub, diameter of hole in hub.

We have on hand patterns for Standard Index Plates, $12^{\prime \prime}, 16^{\prime \prime}$ and $20^{\prime \prime}$ in diameter. These plates have ribs on the under side, and the edges are of a suitable form for cutting to receive a worm.

In sending Index Plates to be drilled, the following instructions should be noted : The surface of the plate should not have lines or marks upon it and should be left unpolished. The side of the plate to be drilled should be plainly indicated and, if to be figured, the manner in which this is to be done and whether to read from the outside of the plate or otherwise. If the edge of the plate is to be cut for a worm, we prefer to make the worm, as usually the results will be more satisfactory.

Prices on application.

GEAR WHEEL CUTTING

To Order.

All varieties of spur and bevel gears, herring bone, internal, spiral worms, intermittent spur and bevel, also rosettes for jewelers and watch case machine engine lathes.

GEAR WHEEL PATTERNS.

We can furnish gear wheel patterns to aip internal, spur or bevel.

STANDARD

GEARS.

An experience of many years in making and cutting Gear Wheels to order, the dimensions of which, in those of the same pitch, have been so varied in width and thickness of rims, arms, etc., made us realize the great advantages which would result from a uniform standard of sizes. We have therefore made iron patterns uniform in style, and are now prepared, by the aid of automatic machinery, to furnish gears as follows, singly or in quantities to suit, at reasonable prices :

Spiral Gears to $26^{\prime \prime}$ diameter.
Planed Bevel or Mitre Gears to $48^{\prime \prime}$ diameter.
Spur Gears to $96^{\prime \prime}$ diameter.
We are also prepared to cut and hob Worms and Worm Gears.

We carry a full line of Standard Cast Iron Gears in stock, and for the convenience of our customers, the following agents also carry a full line in stock :
Carey Machinery \& Supply Co., 26 Light street, Baltimore, Md.
Patterson, Gottfried \& Hunter, Ltd., 146 Centre St., New York, $\mathrm{N} . \mathrm{Y}$.
Powell \& Maddock, 40 North Sixth Street, Philadelphia, Pa.
Chandler \& Farquhar, 36 Federal and 131 Congress Streets, Boston, Mass.
Chas. H. Besly \& Co., 10 and 12 North Canal Street, Chicago, 111 .
The Charles A. Strelinger Co., 98 to 110 Bates, corner Congress Street, Detroit, Mich.
Fear List mailed to any address upon application.

INSTRUCTIONS FOR ORDERING BEVEL GEARS.

Backing for both gear and pinion.
C, or width of face.
D, or diameter of gear hub; d, or diameter of pinion \mathbf{F} If these dimensions are of importance.
E, or distance from centre of pinion shaft to end of 0 or distance from centre of gear shaft to end of pin

Key way, or set screw, and what size?
To be used for pattern or not?
Does the pinion drive or is it driven?
Unless otherwise specified face and ends of h
be finished, and stock will be left on ends of hub

BEVEL GEARS.

The curve of teeth in Bevel Gears, when correctly formed, changes constantly from one end of the tooth to the other. Therefore bevel gears, whose teeth are produced with a cutter of fixed curve, are not theoretically correct, the cutter usually being of a curve that will make the correct form at the outer part of the face of the gear, and of neceswity will leave the curves too large at the finside ends of the teeth. Small bevel gearing is almost universally produced in this manner, which practically answers the purpose, except when the teeth are very coarse or the gears very small, in whigh cases their operation is not satisfactory. In place of cutting by changing position of cutter, etc., the teeth are often flled slightly, in order to round them off to the curve required for their free running. On all bevel gears cut with a cutter of fixed curve, it is necessary to cut through twice, owing to the necessity of making the thickness of the cutter on the pitch line equal to about . $005^{\prime \prime}$ thinner than the space between the teeth at the smallest Pitch diameter. As the width of space between the teeth on the largest pitch diameter should be greater than the thick. ness of the cutter, it must be made so by passing the cutter through the second time. For directions in ordering cutters for bevel gears, sec pages 280 and 281. The cuts on the following page will explain the forms of spur, bevel and mitre gears, also the terms "pitch diameter," "outside diameter," "largest pitch diameter," "length of face," etc. When a pair of bevel gears are of same size and number of teeth, with their lines of centres at right angles, they are called "Mitre Gears," and one cutter will answer for both; but where one gear has a greator number of teeth, or differs in bevel from the one running into $i t$, then each of the pair of gears may require a different cutter.
805

FORMULAS

FOR

Determining the Dimensions of Gears by Diametral Pitch.

Let P denote the diametral pitch, or the number of teeth to one inch of diameter of pitch circle.

" a " " distance between the centres of the two wheels.
" b " " number of tecth in both wheels.
" t " " thickness of tooth or cutter on pitch circle.
" D" " " working depth of tooth.
" f " " amount added to depth of tooth for rounding the corners and for clearance.
" D " $+f$ " the whole depth of tooth.
" $\pi \quad$ constant 3.1416.
" P^{\prime} circular pitch or the distance from the centre of one tooth to the centre of the next on the pitch circle.

The examples placed opposite the formulas on the two pages following are for a single whecl of 12 pitch, 6.166 in . or $6 \mathbf{2 - 1 2} \mathbf{i n}$. diameter \&c., and in the case of the two wheels the larger has the same dimensions. The velocities are respectively 1 and 2 .

807

FOR A SINGLE WHFHH.

Formulag. Examples.

$$
\begin{equation*}
\mathbf{P}=\frac{\mathrm{N}+2}{\mathrm{D}}=\frac{72+2}{6.166}, \text { or } \frac{72+2}{62-12}=12 \tag{1.}
\end{equation*}
$$

$P=\frac{N}{D^{\prime}}=\frac{72}{6}=12$.
$D^{\prime}=\frac{D \times N}{N+2}=\frac{6.166^{\circ} \times 72}{72+2}=6$.

$$
\begin{equation*}
2 . \tag{2.}
\end{equation*}
$$

$$
D^{\prime}=\frac{D \times N}{N+2}=\frac{6.166^{\circ} \times 72}{72+2}=6
$$

$$
\begin{equation*}
D^{\prime}=\frac{N}{P}=\frac{72}{12}=6 \tag{3.}
\end{equation*}
$$

$$
\mathrm{N}=\mathbf{P} \mathbf{D}^{\prime}=12 \times 6=72
$$

$$
5 .
$$

$$
\mathrm{N}=\mathrm{P} D-2=12 \times 6.160-2, \text { or } 12 \times 62.12-2=78 .
$$

$$
\mathrm{D}=\frac{\mathrm{N}+2}{\mathrm{P}}=\frac{72+2}{12}=6.166, \text { or } 62.12
$$

$$
\mathrm{D}=\mathrm{D}^{\prime}+\frac{2}{\mathbf{P}}=6+\frac{2}{12}, \text { or } 6+.168=6.1 \partial 6
$$

$$
8 .
$$

$$
t=\frac{1.57}{P}=\frac{1.57}{12}=.130
$$

$$
\begin{equation*}
\mathrm{D}^{\prime \prime}=\frac{2}{\mathrm{P}} \rightleftharpoons \frac{2}{12}=.166, \text { or } 2.12 \tag{10}
\end{equation*}
$$

$$
\mathrm{f}=\frac{\mathrm{t}}{10}=\frac{.130}{10}=.013
$$

$$
D^{\prime \prime}+1=.166+.013=.179
$$

$$
12 .
$$

$$
\mathrm{P}^{\prime}=\frac{\pi}{\mathbf{P}}=\frac{3.1416}{12}=.262
$$

$$
13 .
$$

$$
\begin{equation*}
\mathrm{P}=\frac{\pi}{\mathrm{P}}=\frac{3.1416}{.262}=12 \tag{14.}
\end{equation*}
$$

FOR A PAIR OF WHEELS.

PORMULAS. EXAMPLES.
$b=2 a P=2 \times 4.5 \times 12=108$.
15.
$\mathrm{n}=\frac{\mathrm{bv}}{\mathrm{v}+\mathrm{V}}=\frac{108 \times 1}{8}=86$. 16.
$N=\frac{\mathrm{n} \mathbf{V}}{V}=\frac{36 \times 2}{1}=72$. 17.
$\mathrm{n}=\frac{\mathrm{N} V}{\mathrm{~V}}=\frac{72 \times 1}{2}=86$.
'18.
$\mathrm{N}=\frac{\mathrm{bv}}{\mathrm{v}+\mathrm{V}}=\frac{108 \times 2}{\mathrm{~s}}=78$.
$\mathrm{n}=\frac{\mathrm{P} \boldsymbol{D}^{\prime} \mathrm{V}}{\mathrm{v}}=\frac{12 \times 6 \times 1}{2}=8$.
12.
20.
$\nabla=\frac{n v}{N}=\frac{36 \times 2}{72}=1$.
21.
$\mathrm{v}=\frac{\mathrm{NV}}{\mathrm{n}}=\frac{72 \times 1}{36}=2$.
22.
$\mathrm{V}=\frac{\mathrm{P} \mathrm{D}^{\prime} \mathrm{V}}{\mathrm{n}}=\frac{12 \times 6 \times 1}{36}=2$.
$\mathrm{D}=\frac{2 \mathrm{a}(\mathrm{N}+2)}{\mathrm{b}}=\frac{2 \times 4.5 \times(72+2)}{108}=6.168$.
24.
$b=\frac{2 a(n+2)}{b}=\frac{2 \times 4.5 \times(36+2)}{108}=3.166$.
25.
$\mathrm{a}=\frac{\mathrm{b}}{2 \mathrm{P}}=\frac{108}{2 \times 12}=4.5$.
$D^{\prime}=\frac{2 \mathrm{a} \mathrm{v}}{\mathrm{v}+\mathrm{V}}=\frac{2 \times 4.5 \times 2}{3}=6$.
27.
$\mathrm{d}^{\prime}=\frac{2 \mathrm{av}}{\mathrm{v}+\mathrm{V}}=\frac{2 \times 4.5 \times 1}{3}=3$.
28.
$2=\frac{D^{\prime}+d^{\prime}}{2}=\frac{6+3^{\prime \prime}}{2}=4.5$.

PUBLICATIONS.

We issue the following copyrighted publications:-

TREATISE ON MILLING MACHINES.

This work describes the construction and use of Milling Machines, as made by us. Fully illustrated. Sent by mail on receipt of price. Cardboard, 50 cents.

CONSTRUCTION AND USE OF UNIVERSAL GRINDING MACHINES.

Edition of 1901 .

This work, recently revised, describes the construction and use of Universal Grinding Machines, as made by us. Fully illustrated. Sent by mail on receipt of price. Cardboard, 20 cents.

USE OF No. 13 UNIVERSAL AND TOOL GRINDING MACHINE.

This work describes the construction and use of the No. 13 Universal and Tool Grinding Machine, as made by us. Fully illustrated. Price, Cardboard, 25 cents.

USE OF PLAIN GRINDING MACHINES.

 Edition of 190%.This work describes the construction and use of Plain Grinding Machines, as made by us. Fully illustrated. Sent by mail on receipt of price. Cardboard, 25 cents.

PRACTICAL TREATISE ON GEARING. Edition of 1902.

This book, with its tables and illustrations, is written for those in practical life, who wish to obtain practical explanations and directions in making Gear Wheels. Sent by mail on receipt of price. Cloth, $\$ 1.00$; Cardboard, 75 cents.

FORMOLAS IN GEARING.
 Edition of 1900.

This work supplements the "Practical Treatise on Gearing" and contains formulas for solving the problems that occur in gearing. Sent by mail on receipt of price. Cloth, $\$ 1.50$.

HAND BOOK

FOR APPRENTICED MACHINISTS.

Edition of 1902.
This hook, illustrated, is for learners in the use of Machine Tools The present edition has been carefully revised and Sent by mail on receipt of price. Cloth, 50 cents.

CAST IRON CORE BOXES

For Foundry Use.

The advantages of the Cast Iron Core Boxes shown above are readlly appreciated by every foundryman. They make solid cores, straight, round and true, are made as light as possible, consistent with the hard usage to which such tools are many times subjected, turned true and of standard size. The tapers in ends of boxes are all standard and the pins, for holding the halves in place, are of such form that the box is easily parted and still held firmiy in place when together. Each half of every box is plainly marked with its size, so that any size desired can be picked out at a glance.

PRICE.

Size.	Price.	Length	Size.	Price.	Length
$1.2{ }^{\text {a }}$	\$ 70	$5^{\prime \prime}$	$11.8^{\prime \prime}$	\$120	$97.8{ }^{\prime \prime}$
5.8	80	6	11.4	130	10 5-8
3.4	90	8	13 3-8	140	113 -8
7.8	100	8	11.2	150	12
1	110	9			

RUBBER TIPPED FOUNDRY RAMMERS.

The Foundry Rammer, shown, has advantages over the rainmer usually employed in foundries, in that it does not mar the pattern, whether it be of wood or metal and with it the mould can be made as hard as with the ordinary ram. mers.

The rubber tip is held in an iron holder by two pins and can be replaced, when worn, by a new tip at a small expense and with little trouble.

These rammers are made in two sizes.
The large size for general floor use, shown, is $3^{\prime \prime}$ wide, $73-8^{\prime \prime}$ long and holds a tip. $3^{\prime \prime}$ wide, $11-16^{\prime \prime}$ thick and $34^{\prime \prime}$ high. It is provided with a wooden bandle and an iron butt about $3^{\prime \prime}$ in diancter. The hardles are furnished in two lengthe, $47^{\prime \prime}$ or $58^{\prime \prime}$ over all.

The small size is convenient for peening under large moulds and working in small spaces, as corners etc.

It is similar the above, differing only in size and in the length of the ferrule. It is $2^{\prime \prime}$ wide, $23-4^{\prime \prime}$ long and holds a tip $2 \mathbf{3 . 1 6 "}$ wide, $11-16^{\prime \prime}$ thick and $3-4^{\prime \prime}$ high. It is provided with a handle made of $5-8^{\prime \prime}$ round iron, screwed into the holder, the length over all being $351-4^{\prime \prime}$.
Price, Large Rubber Tipped Foundry Rammers, complete, each, $\$ 085$; Rubber Tips, each, $\$ 015$; in lots of not leas than one dozen, $\$ 150$ per dozen.

- Price, Small Rubber Tipped Foundry Rammers, complete, each, 8070 ; Rubber Tips, each, $\$ 0$ 12; in lots of not less than one dozen, $\$ 120$ per dozen.

818

IMPROVED HORSE CLIPPERS.

Prico, $\boldsymbol{\$}_{3} 00$.
sent by Mail on Receipt of $8 \mathbf{2 5}$.
prices for bharpening and repairing.
Sharpening Clippers, 000
New Top-Plate, Including sharpening, : : : 110
New Botiom-Plate, including sharpening, . . . 180

1895 DESIGN HORSE CLIPPERS.

Price, \&2 25.
Sent by Mail on Receipt of $\$_{2} 50$.
PRICES FOR SHARPENING AND REPAIRIITG.
Sharpening Clippers, . . . 8080
New Top-Plate, including sharpening . . . 075
New Bottom-Plate, including sharpening, . . . 100
If other parts are needed, they are charged extra.
Parties wishing to have Clippers repaired can send them to us by mall at less expense than by express.
(hur Clipper plates cannot be applied to other Cliypers.
We cannot be responsible if the teeth break in sharpem ing. If Clippers are to be returned by mail, twenty. cents should be remitted for postage.

818

For Barbers' Use.

Number,	00	0	1	2	3
Price,	$\$ 300$	$\$ 300$	$\$ 300$	$\$ 350$	$\$ 400$

Sent by mail on reoejpt of price and fifteen cents for postage.

Number,	$* 000$	$* 00$	0	1	2	3
Price,	$\$ 300$	$\$ 300$	$\$ 300$	$\$ 300$	$\$ 350$	$\$ 400$

Sent by mail on receipt of price and afteen cents for postage.
*This Clipper is not made in the new way; but is the same in design as in previous years, that deaign being satisfactory for so narrow a Clipper.

PRICES FOR SHARPENING AND REPAIRING.

Our Hair Clipper Plates Cannot be Applied to Other Clippers.

If other parts are needed they are charged extra. We cannot be responsible If the teeth F - mening. If Clippers are to be returned by mail, fifteen cents shr

YARN REELS.

FOR USE IN CONNECTION WITH

> Roving Scales and Yarn Testers, For Obtaining the Stretch, Strength and Number of Cotton, Woolen, and Worsted Yarns.

Price, $\$ 25$ 00.
The cut illustrates a Yarn Reel specially adapted for accurate reeling of fine yarns.
The reel is 54 inches, or one and a half yards, in circumference. The dial is graduated into 120 parts, indicating the number of yards reeled from each spindle. The yarn guides and spindles are kept in line with each other while feeding yarn upon the reel, which is very desirable when recling fine yarns. The extra length of yarn guides is of use in increasing the friction upon the yarn by taking a half-turn or more of yarn around them. The automatic feed motion lays the yarn flat upon the reel, thus securing accurate and uniform measurement and consequently correct results as to stretch, strength and numbering. See our printed tables for use in connection with this reel, for num. bering cotton, linen, woolen and worsted yarns.

The bright spot on the web of the worm wheel is to show when the zero upon the dial approaches the index point, find thus assists the operator to stop promptly on the striking of the bell.

Made with four or seven spindles. 36 inch Reel carried in stock.

ROVING OR YARN SCALES.

OLD STYLE.

No. 912. Price, $\$ 8 \infty$.
The beam is graduated into 100 parts, indicating grains.
Four weights, 100, 200, 400 and 800 grains, are furnished with each scale.

A table showing the weights of all numbers of yarn in grains, a description of the scales and the uses to which it can be applied, is furnished with each.

ROVING REEL

To Accompany the Roving and Yarn Scales.

Price, $\$ 1400$.

For reeling small quantities of roviny, Arnwinvanit j"in and also to determine the number of twikt In >min,

Circumference of large drum $1 s^{\prime \prime}$.

IMPROVED
 ROVING OR YARN SCALES.

For Accurate Weighing.

No'. 9ro. Price, \$10 00.
These scales will weigh one pound by tenths of grains or one seventy-thousandth part of ove pound avoirdupois, rendering them especially well adapted for use in connection with Yarn Reels, for the numbering of yarn from the weight of hank, giving the weight in tenths of grains to compare with tables. They are also useful for the weighing of any small articles, colors, drugs etc., for computation of large quantities, or for postal scales. The finished parts are nickel-plated and the stand japanned and ornamented. Ten balancing weights accompany each scale, viz.: One each of $20,30,50,100,200,300,500,1000,2000$ and 3000 grains; the 20 grains on the bears 'eing each divided into 10 parts.

SAMPLE WEIGHING SCALES.

No. 911. Price, \$10 00.
These scales will weigh one pound by ten thousandths of a pound. They are well adapted for weighing small articles, screws, samples of paper, color, drugs, \&c., for the purpose of computing large quantities. They also answer as postal scales. The finished parts are all nickel-plated, and the stand is japanned and ornamented. Nine balancing weights accompany the scales, viz.: One each respectively of $100,200,400,800,1000,2000,2000,4000$ ten thousandths, and also one ounce weight for postage weighing.
7000 grains equal one pound atoirdupois.

	"			"	$1-4$ of an ounce.	
3121.2 "	"	"	"	"		
468 8-4 "	"	"	"	"	$3 \cdot 4$	"
625 "	"	"	"	"	$1{ }^{\prime}$	"
2500 "	"	"	"	"	1-4 of a	pound.
5000 "	"	"	"	"	1.2 ،	
7800 "	'	"	"	"	3.4	"

We also make scales to weigh by the metric system to $1-100$ gramme. Weights, $1,2,5,10,20,40,60,100,100$, and 200 grammes.

STANDARD CAST IRON SURFACE PLATES.

We have in stock a variety of sizes, to which we frequently make additions, all of which are uniform in style.

These plates are usually sold singly, not in pairs, as shown Incut. Unless otherwise specifed, price is quoted for a single plate, with box and cover.

Size.	Welght.	Price Fach.	Size.	Weight.	Price Kach.
$31 / 2^{\prime \prime} \times 4^{\prime \prime}$	31 bs .	\$250	$12^{\prime \prime} \times 24^{\prime \prime}$	t001bs.	\$35 00
$31 / 2 \times 12$	10	500	14×14	50	2200
4×15	20	725	14×18	65	2900
$41 / 2 \times 6$	5	325	14×21	95	8500
5×16	25	950	15×30	160	5400
6×6	10	425	16×16	65	2900
6×12	20	850	16×48	880	9900
6×26	50	1700	18×18	80	8700
6×50	120	3700	18×24	130	5000
$61 / 2 \times 18$	30	1500	18×36	230	6600
$7 \times 11 / 2$	10	625	20×30	215	7200
7×10^{2}	15	800	22×80	1070	23900.
8×12	20	1100	24×24	200	6800
9×9	20	900	24×36	300	10400
9×14	30	1400	24×48	445	14000
10×15	35	1700	24×60	670	18800
10×30	100	3600	30×36	480	18100
12×12	30	1600	36×68	1025	80000
12×18	55	2500			

CAST IRON STRAIGHT EDGES.

These Straight Edges are of a form best adapted to retain a straight line.

The edge of each is scraped to form a true surface, and the straight edges when thus made are indispensable in the proper scraping of the ways of planer and lathe beds, etc.

Size,	Price.	Weight.
* $18^{\prime \prime} \times 11$ - $2^{\prime \prime}$	\$700	5 lbs.
*24 $\times 15-8$	950	8 "
*30 x 1 3-4	1200	13 "
*36 x 17.8	1500	17 "
+48×2	2050	35 "
t60 $\times 21-8$	2650	48 "
$772 \times 21-4$	3300	72 "
$\dagger 84 \times 25-16$	3600	119 "
$\dagger 96 \times 23-8$	3900	145 "
$\dagger 120 \times 21.2$	5000	195 "
$\ddagger \dagger 180 \times 31-2$		832 "

[^8]

This Indicator is especially useful to those erecting or inspecting machines. It is possible by its use to readily determine the degree of inaccuracy of a plane surface on the top, bottom or side of a piece of work or to easily ascertain the amount of end movement, for example, of a spindle or the extent to which a spindle runs out of true.

The upright post, or stand, may be clamped at any point upon the base by the knurled nut. The sleeve which carries the arm may be fastened at any height on the post or turned around the post to bring the arm on either side. The arm turns in the sleeve and may be set at any angle relative to the base or may be inverted so that the point brought in contact with the work will be downward instead of the position shown.
The mevement of this point is magnified a number of times by the length of the index finger or lever and its movements may be read upon the graduations shown.
The indexing finger may be adjusted and brought to zero ly the knurl headed screw shown whatever may be the position of the arm.

A split block and angular post is furnished with the. indicator.

The length of the base is $8^{\prime \prime}$, the height of the graduations read to thousandths of an read to $1-50 \mathrm{~m} / \mathrm{m}$.

DIAL TEST INDICATOR.

This Indicator is especially serviceable to those erecting or inspecting machines, as it is possible to readily determine the degree of inaccuracy of a surface on the top, bottom or side of a piece of work, to ascertain the amount of end movement, for example, of a spindle, or the extent to which a spindle or arlor runs out of true.

The upright post or stand can be clamped at any point upon the base and the sleeve that carries the arm can be clamped at any height on the post or turned around the post to bring the arm on either side. The arm turns in the sleeve and can be set at any angle relative to the base or it can be removed from the post and used independently, as in the tool post of a lathe.

The movement of the point that hears against the work is magnified about 50 times and is indicated by the pointer on the dial, which is about $13.4^{\prime \prime}$ in diameter and plainly graduated to read to thousandths of an inch. The upper end of spindle is provided with jaws for measuring sheet metal etc. The spindle has a movement of 1-2".

Stops are furnished for use on the under side of the base against perpendicular or angular surfaces.

The length of the base is $8^{\prime \prime}$ and the height of the post $9^{\prime \prime}$.
Fach tool is neatly packed in a substantial box fitted for hethag the various parts when not in use.

MERCURY PLUMB BOBS.

These Plumb Bobs are made of solld steel rod, bored out and filled with mercury, or quicksilver, which makes them unusually heavy, in proportion to their size, and the centre of gravity low. The cut at the left shows the manner in which these Plumb Bobs are constructed. The comparatively small diameters allow them to be used close to corners and walls, and are not easily affected by draughts of air, as well as allowing them to be carried or packed in small spaces.

The points are hardened, and the bodies and points are ground. The Plumb Bobs are nickel-plated, and each is furnished with a braided silk line. The $3 \frac{1}{2} \mathrm{oz}$. can easily be carried in the vest pocket.

SHEET METAL GAUGE.

No. 742. Price, $\$ 1000$.

This Gauge will measure to $1.4^{\prime \prime}$ by thousandths of an Inch, and is found a convenient and substantial tool for Jewelers, Silversmiths, Shect Metal Rollers and Workers, Rubber and Paper Manufacturers, Type Founders, etc.

The frame A is of cast iron, japanned, and supports the measuring mechanism. The arm B is fastened to the frame and holds the measuring screw D and the tdjusting screw C. The knurled thumb screw D is for operating the measuring screw and the movable dial. The movable dial is of German silver and the graduations are read by means of the pointer shown at the right of arm B. Provision is made for compensation for wear.

STANDARD INTERNAL

AND EXTERNAL CYLINDRICAI

GAUGES.

INTERNAL.

EXTERNAL.

These Standard Internal Cylindrical Gauges, or Plugs, and Standard External Cylindrical Gauges, or Rings, are made in the most careful manner, and furnish gauges for accurate measurements.

These Gauges are furnished singly, of any desired size, and also in regular sets containing sizes from one-quarter inch to two inches, inclusive, varying by sixteenths of an inch.

Metric Gauges are also carried in stock, in sizes from $6 \mathrm{~m} / \mathrm{m}$ to $50 \mathrm{~m} / \mathrm{m}$, varying by 1 m / m; and from $55 \mathrm{~m} / \mathrm{m}$ to $100 \mathrm{~m} / \mathrm{m}$, varying by $5 \mathrm{~m} / \mathrm{m}$.

Gauge Circular sent on application.
For Prices, see opposite page.

PRICES OF

STANDARD INTERNAL AND FXTERNAL CYLINDRICAL GAUGĖS.

Sizes.	Internal.	External.	Both.
1-4"	\$300	\$4 45	\$7 45
5-16	300	460	760
$3-8$	310	475	785
7-16	320	490	810
1.2	330	505	835
9-16	340	520	860
5-8	350	535	885
11-16	360	550	910
3 -4	370	565	935
13-16	380	580	960
7.8	390	595	985
15-16	400	610	1010
1	410	625	1035
1 1-16	420	650	1070
11.8	430	675	1105
$13-16$	440	700	1140
$11-4$	450	725	1175
1 5-16	465	750	1215
13 -8	480	775	1255
1 7-16	495	800	1295
$11-2$	510	825	1335
1 9-16	525	850	1375
$15-8$	540	875	1415
$111-16$	555	900	1455
13.4	570	925	1495
$113-16$	585	950	1535
17.8	600	975	1575
$115-16$	615	1000	- 1615
2	630	1025	1655
$2{ }_{2}^{1-16}$	700	1100	1800
$\begin{array}{ll}2 & 1.8\end{array}$	715	1125	1840
23 -16	730	1150	1880
$\begin{array}{ll}2 & 1-4\end{array}$	745	1175	1920
$2 \begin{array}{ll}2 & 5-16\end{array}$	760	1200	1960
$\begin{array}{ll}2 & 3-8 \\ 9 & \\ 7\end{array}$	785	1225	$\stackrel{20}{ } 10$
$27-16$	810	1250	- 2060
$21-2$	825	1275	2100
2 9-16	840	1300	2140
25.8	855	1325	2180
2 11-16	870	1350	2220
23 -4	885	1375	2260
$213-16$	900	1400	2300
$27-8$	915	1425	23
2 15-16	930	1450	2
3	945	1475	

STANDARD REFERENCE DISKS.

> The Disks are used, generally without handles, for setting calipers, testing measuring tools, and reference for sizes in shop practice.

With handles, they are used in place of Standard Cylindrical Gauges, but are not recommended for constant use as substitutes for these.

These Disks are of steel, hardened, and accurately ground. A complete set consists of 45 disks, varying by 16 ths of an inch, from 1-4" to $3^{\prime \prime}$ diameter, and six handles.

Size.	Price.	Size.	Price	Size.	Price.	Size.	Price.
*1-4"	\$150	$1{ }^{\prime \prime}$	*1 10	$111.16^{\prime \prime}$	\$140	$27.16{ }^{\prime \prime}$	\$180
*5.16	150	11.16	110	13.4	140	21.2	180
3.8	90	11.8	110	113.16	155	$29-16$	195
7-16	90	13.16	110	17.8	155	$25-8$	195
1.2	100	11.4	110	1 15-16	155	211.16	195
9.16	100	$15-16$	125	2	155	23.4	210
5.8	100	13.8	125	21.16	165	2 13-16	210
11-16	100	17.16	125	21.8	165	27.8	225
3.4	105	1 1-2	125	23.16	165	$215-16$	225
13-16	105	1 9-16	140	$21-4$	165	3	225
7.8	105	15.8	140	25.16	180		
15-16	105			$23-8$	180		-

PRICES OF HANDLES.
For 3-8" to 9-16" Disks, ${ }^{\prime \prime} 0{ }^{65} \mid$ For 1 1-8"to 1 3-4" Disks, $\$ 080$ For $5-8^{\prime \prime}$ to 11 1-16" Disks, 75 For 1 13-16" to $3^{\prime \prime}$ Disks, 90
Metric Gauges are also carried in stock, in sizes from $6 \mathrm{~m} / \mathrm{m}$ to $50 \mathrm{~m} / \mathrm{m}$, varying by $2 \mathrm{~m} / \mathrm{m}$; and $55 \mathrm{~m} / \mathrm{m}$ to $100 \mathrm{~m} / \mathrm{m}$, vary. ing by $5 \mathrm{~m} / \mathrm{m}$.

STANDARD CALIPER GAUGES.

These Ganges are hardened and ground accuratcly, one end for outside and the other for inside measurement. By their use, mistakes in the setting of calipers and variations in measurements by different workmen, will be in a great measure avoided. Their form gives lightness and strength, making them preferable to plugs and rings for frequent use. As furnishing convenient and reliable standard sizes for every day use in the workshop, they are of great advantage and their use will contribute to uniformity in the production of the working parts of machinery.
-These Gauges are furnished separately of any desired size to three inches. Sizes larger than three inches are made in two parts for convenience in haudling. They are also supplied in sets; each full set, neatly arranged in a box, con. tains sizes from one-quarter inch to two and one-half inches diameter, varying by sixteenths of an inch up to two inches diameter and above that ly eighths of an inch.

STANDARD
 END MFASURIFG RODG.

WITH SPHERICAL BNDS.

 English or Metric Measure.The Standard End Measuring Rorls are made of steel, bardened on the ends and accurately ground, so that the ends are sections of true spheres having diameters equal to those of the length of the rods. These Rodscan be used for measuring rings, cylinders etc., setting calipers, comparing gauges or other work of like character and are especially useful for measuring parallel surfaces, as the Spherical Ends will pass by such surfaces without cramping, as would spheres of like diameters.

We furnish them in all lengths from $3^{\prime \prime}$ to $16^{\prime \prime}$, inclusive. The Rods from $3^{\prime \prime}$ to $6^{\prime \prime}$ are $3-8^{\prime \prime}$ in diameter and larger than $6^{\prime \prime}, 1.2^{\prime \prime}$ in diameter.

PRICE LIST.

Length.	Price.	Length.	Price.
$3^{\prime \prime}$	$\$ 140$	$10^{\prime \prime}$	$\$ 280$
4	160	11	300
5	180	12	320
6	200	13	340
7	220	14	360
8	240	15	330
9	260	16	400

All intermediate sizes furnished at the price of the size next larger given in the list.

Metric Sizes. Prices upon application.

STANDARD CALIPER GAUGES.

INTERNAL.

Size.	Prices.		Size.	Prices.		Size.	Prices.	
	$\begin{gathered} \text { Both } \\ \text { Ends } \\ \text { Fnshd. } \end{gathered}$	$\begin{gathered} \text { Single } \\ \text { End } \\ \text { Fnsha. } \end{gathered}$		Both Ends Fnshd	$\begin{gathered} \text { Single } \\ \text { End } \\ \text { Fnshd. } \end{gathered}$		Both Ends Fnshd.	$\left\lvert\, \begin{gathered} \text { Single } \\ \text { End } \\ \text { Fnshd } \end{gathered}\right.$
1-4"	\$250	\$140	$13-16^{\prime \prime}$	\$2 85	\$155	$21.8^{\prime \prime}$	\$400	\$220
5-16	250	140	11-4	290	160	2 3-16	410	230
3	250	140	$15-16$	295	160	21.4	420	230
7.16	250	140	$13-8$	300	165	25.16	430	230
$1-2$	250	140	17.16	305	165	23.8	440	240
9.16	250	140	11.2	310	170	$27-16$	450	240
5-8	250	140	$19-16$	320	175	$21-2$	460	250
11-16	250	140	$15-8$	330	180	29.16	500	280
3-4	250	145	$111-16$	340	190	$25-8$	525	290
13.16	255	145	13.4	350	200	2 11-16 to		
7.8	260	145	$113-16$	360	200	$23-4$	5 ธ0	300
15.16	265	145	17.8	370	210	2 13-16 to		
1	270	150	$115-16$	380	210	215 -16		30
11.16	275	150	2	390	220	3	650	
11.8	280	155	21.16	395	220			

THE FOLLOWING SIZES ARE MADE IN TWO PARTS.

Size.	Price, Both Parts.	$\begin{array}{\|c\|\|} \hline \text { Price, } \\ \text { One Part } \end{array}$	Size.	Price, Both Parts.	Price, One Part.
$3^{\prime \prime}$ to $31.4{ }^{\prime \prime}$	\$650	\$3 25	$41-16^{\prime \prime}$ to $5^{\prime \prime}$	\$8 50	\$425
3 5-16 to 3-1-2	700	350	$51-16$ to 6	900	450
3 9-16 to 3-3-4	750	375	$61-16$ to 7	950	475
3 13-16 to 4	800	400	71.16 to 8	1000	500

EXTERNAL END ONLY.
$81-16^{\prime \prime}$ to $9^{\prime \prime}$, . Price, $\$ 565 \mid 101-16^{\prime \prime}$ to $11^{\prime \prime}$, Price, $\$ 700$ $91-16$ to 10,. Price, $625 / 111-16$ to 12, Price, 800

Metric Gauges are also carried in stock, in sizes from $5 \mathrm{~m} / \mathrm{m}$ to $100 \mathrm{~m} / \mathrm{m}$, varying by $1 \mathrm{~m} / \mathrm{m} ; 6 \mathrm{~m} / \mathrm{m}$ to $50 \mathrm{~m} / \mathrm{m}$, varying by $2 \mathrm{~m} / \mathrm{m}$; and $105 \mathrm{~m} / \mathrm{m}$ to $150 \mathrm{~m} / \mathrm{m}$, varying by $5 \mathrm{~m} / \mathrm{m}$.

Prices furnished on application.

LIMIT GAUGES.

LIMIT GAUGES.

The accurate production of duplicate parts, as required in the economical manufacture of machinery, tools, instruments etc. demands accurate Gauges and, in order to secure the most economical production, Limit Gauges are necessary to avoid time being wasted in finishing the work unduly accurate and still leaving it so that two or more parts when brought together will lit sufficiently well to meet requirements.

The advantages derived from the use of Limit Gauges are being appreciated more and more, as, by their use, the time consumed in testing and gauging is reduced to a mini mum, and the duplication of parts is insured.

Our facilities in the Gauge department enalle us to furnish Gauges of any required form or degrecof accuracy.

We are pleased to give the benefit of our extended experience in the use of these Gauges connected with the manufacture of machinery and tools and to assist in selecting the Gauges best suited for any special work.

The cuts shown on opposite page represent the most common form of Internal and External Limit Gauges, such as we have found well adapted for our work.

The two ends of Gauges of this trpe are of different shape. The workman is thus enabled to easily and quickly distinquish the large from the small end without looking at the sizes stamped upon the Gauge.

These Gauges are not only used as references for finishing operations but are of great advantage in roughing work for finishing. When used in this way the same amount of stock is left on each piece, thus enabling the operator, who finishes the pieces, to work to better advantage than if they were of various sizes.

Prices are quoted on Limit or Special Gauges of all descriptions when specifications, drawings or samples of work are sent.

The degree of accuracy required should be plainly stated in thousandths or fractions of a thousandth of an inch.

GROUND FLAT STOCK.

This Stock is of service not only in tool work for making Iat gauges, test tools, "jlg work," etc., but in all work requiring steel of a definite thickness.

This steel is of first quality, cut the length of the sheet, annealed, and ground to within a limit of .001 " of the given thickness.

PRICES.

Size in Inches.	Price per Pound.	Sixe in Inches.	Price per Poand.
1-16		3-16	
$2 \times 18 \times 1.16$	\$080	$2 \times 18 \times 8.16$	$\$ 045$
$21.2 \times 18 \times 1.16$	080	$21.2 \times 18 \times 3.16$	045
$8 \times 18 \times 1.16$	080	$3 \times 18 \times 3.16$	045
$81.2 \times 18 \times 1.16$	080	$31.2 \times 18 \times 3.16$	045
$4 \times 18 \times 1-16$	080	$4 \times 18 \times 3-16$	045
3-32		7-32	
$2 \times 18 \times 3.32$	065	$2 \times 18 \times 7.32$	045
$21-2 \times 18 \times 3-32$	065	$21.2 \times 18 \times 7.32$	045
$3 \times 18 \times 3-32$	065	$3 \times 18 \times 7.32$	045
$31.2 \times 18 \times 3.32$	065	$31.2 \times 18 \times 7.32$	045
$4 \times 18 \times 3-32$	065	$4 \times 18 \times 7.82$	045
1-8		1-4	
$2 \times 18 \times 1-8$	050	$2 \times 18 \times 1-4$	040
$21.2 \times 18 \times 1.8$	050	$21-2 \times 18 \times 1-4$	040
8 ¢ $\times 18 \times 1.8$	050	3 x $18 \times 1-4$	040
$81.2 \times 18 \times 1.8$	050	$31-2 \times 18 \times 1-4$	040
$4 \times 18 \times 1.8$	050	$4 \times 18 \times 1-4$	040
5-32			
$2 \times 18 \times 5-32$	050		
$21.2 \times 18 \times 5-32$	050		
$3 \times 18 \times 5.32$	050		
$31.2 \times 18 \times 5.32$	050		
$4 \times 18 \times 5-32$	050		

Other sizes furnished to order. Prices upon application.

388

MICROMETER CALIPERS.

Micrometer calipers form convenient and accurate Instruments for fine external measurements. They are made in different sizes and styles to measure all sizes to twenty-four inches. They are graduated to read to thousandths of an inch, but one-half and one-quarter thousandths are readily estimated. Some of the calipers have verniers lyy which sizes can be oltained to ten-thousandths. We also furnish some of these instruments to read to hundredths of a millimetre instead of to thousandths of an inch.

The gauge screws, except in Calipers Nos. 1 and 71, are encased and protected from dirt and liability to injury. The parts most subject to wear are hardened and means of adjustment are provided to compensate for wear of the screw or nut. The decimal equivalents stamped on the frame are very convenient and render possible the immediate expres. sion of readings in eighths, sixteenths, thirty-seeonds and sixty-fourths of an inch. When graduated to read to hundredths of a millimetre, the tables of decimal equivalents are omitted.
The chief mechanical principle embodied in the construction is that of a screw free to move in a fixed nut. An opening, to receive the work to be measured, is afforded by the backward movement of the screw and the size of the opening is indicated by the graduations.

The pitch of the screw c, is forty to the inch. The graduation of the hul, a, in a line parallel to the axis of the serew, is forty to the inch and is figured $0,1,2$, etc., every fourth division. As the graduation conforms to the pitch of the screw; each division equals the longitudinal distance tra. versed by the screw in one complete rotition and shows that the caliper has been opened one-fortieth or .025 of an inch. The beveled edge of the thimble, D, is graduated into twenty.five parts and figured every fifth division, 0,5 , $\mathbf{1 0 , 1 5 , 2 0}$. Each division, when jassing the line of graduations on the hub, indicates that the screw has made one twenty-lifth of a turn and the opening of the caliper increased one twenty-fifth of one-fortieth, or one thousandth of an inch.

Hence, to read the caliper, multiply the number of divisions visible on the scale of the hub by twenty-five and add the number of divisions on the scale of the thimble from zero to the line coincident with the line of graduations on hub.

MICROMETER CALIPER No. 1.

(Pocket Sheet Metal Gauge.)
Price, $\$ 4 \infty . \quad$ In Morocco Case, $\$ 45$.

MICROMETER CALIPER No. 2.

English or Metric Measure.
Price, $\$ 450$ With Ratchet Stop, $\$ 500$. Morocco Case, \$0 50.

This Caliper is shown fall size and measures all sizes less than one-half inch by 1000ths of an inch. This Caliper is also made to measure all sizes less than 13 millimetres by 100ths of a millimetre. When so made the table of decimal equivalents is omitted.

MICROMETER CALIPER No. 3.

Price, $\$ 550$. With Ratchet Stop, $\$ 600$. Morocco Case, \$0 50.
This Caliper differs from Micrometer Caliper No. 2, Eng. lish, only in being graduated to read to ten-thousandths, as well as thousandths of an inch.

RATCHET STOP FOR MICROMETER CALIPERS.

Patented November 6, 1894.
For Micrometer Calipers with Ratchet Stop add 50 cents to the regular price.

The Ratchet Stop can be furnished with any of our Micrometer Calipers. It is found convenient where a number of measurements have to be quickly taken, as it enables the objects measured to be subjected to the same degree of pressure.

In opening the tool, the pawl positively engages the ratchet so that it cannot slip by, thus making the Ratchet Stop positive in its return.

The ratchet and pawl are hardened.

MICROMETER CALIPER No. 4.

English or Metric Measure.
Price, $\$ 450$. With Ratchet Stop $\$ 50$. Morocco Case, \$o 50.

MICROMETER CALIPER No. 4-A.

English or Metric Measure.

Price, \$450. With Ratchet Stop, \$5 $\mathbf{0}$. Morocco Case, \$o 50.

Patented December 30, 1:02.

the measuring surfaces are left square. Each Caliper is provided with a clamp ring which clamps the spindle and preserves the setting.

This Caliper is also made to measure all sizes less than thirteen millimetres by hundredths of a millimetre. When so made the table of decimal equivalents is omitted.

MICROMETER CALIPER No. 5.

Price, $\$ 5$ 50. With Ratchet Stop, $\$ 600$. Morocco Case, \$o 50.

This Caliper differs from Micrometer Caliper No. 4, Eng. lish, only in being graduated to read to ten thousandths, as well as thousandths of an inch.

MICROMETER CALIPER No. 5-A.

Price, $\$ 5$ 50. With Ratchet Stop, $\$ 6 \infty$. Morocco Case, \$0 50.
Patented December 30, 1902.
This Caliper differs from Micrometer Caliper No. 5 only in having a clamp ring which clamps the spindle and pre. serves the setting.

MICROMETER CALIPER No. 6. For Electricians.

Price, $\$ 550$. With Ratchet Stop, $\$ 600$. Morocco Case, \$0 50.

This Caliper, ärranged for the users of wire for electrical purposes, measures all sizes to $0000, \mathrm{~B} \& \mathrm{~S}$. Gatuge, by 10ths of mils. The equivalents, expressed in mils, of the different sizes of wire from 0000 to 20, B\&S.Gauge, are stamped on one side of the frame and the circular mils of the same size on the other.
Three formulas are stamped on the thimble: one for the weight, length in feet and diameter being known; one for length in feet, weight and diameter being known; and one for resistance of commercial copper wire, in olims per hundred fect at $75^{\circ} \mathrm{F}$., length and diameter being known.

MICROMETER CALIPER No. 7. For Electricians.

Price, $\$ 5$ 50. With Ratchet Stop, $\$ 6 \mathbf{0}$.
Niorocco Case, \$o 50.
This Caliper differs from Mierometer Caliper No. 6, only in that the equivalents stamped on one side of the frame are for wire from 21 to $44, \mathrm{~B} . \& \mathrm{~S}$. Gis the resistance of commercial copper wire, in of Tmad feet at $75^{\circ} \mathrm{F}$., of the same sizes on the other

888

MICROMETER CALIPER No. 8.

English or Metric Measure.
Price, $\$ 5$ 50. With Ratchet Stol, $\$ 600$. Morocco Case, \$0 50.

Patented July 28, 1891; Dec. 31), 1902.

This Caliper is shown full size and measures all sizes less than an inch by thousandths of an inch. The aljustment of the measuring serew is made by an adjustable threaded nut which produces the necessary friction by bind. ing the thread evenly, on the angle, thus obvi. ating the use of slots.

Every Caliper is provided with a clamp ring which clamps the spindle and preserves the setting.
This Caliper is also made to measure all sizes less than twenty-five millimetres by hundredths of a millimetre. When so made, the table of decimal equivalents is omitted.

MICROMETER CALIPER No. 10.

Price, $\$ 6$ 50. With Ratchet Stop, $\$ 700$. Morocco Case, \$o 50.
Patented July 28, 1891, and December 30, 1:02.
This Caliper differs from Misrometer Caliper No. R, only in being graduated to read to ten-thousandths of an inch by a Vernier on the front of the harrel.

Every Caliper is provided with a clamp ring which clamps the spindle and preserves the setting.

MICROMETER CALIPER No. 14.

For Measuring the Thickness of Tubing.
 Price, $\$ 4$ 50. With Ratchet Stop, $\$ 500$.
 Morocco Case, \$o 50.

This Caliper, shown full size, is designed especially to meet the demand for an instrument to measure accurately the thickness of tubing and is well adapted for use in Tube *orks, Boiler Shops, Bicycle Manufactories etc.
It will measure the thickness of tubing from $5.16^{\prime \prime}$ inside diameter upward by $\mathbf{1 - 1 0 0 0}$ of an inch.
The anvil, or fixed measuring point, is rounded on the end so that it touches at only one point on the inside of the tube and, the end of the movable spindle being flat, touches at only one point on the outside, thus giving the exact thickness of the tube.

MICROMETIER CALIPER No. 15. English or Metric Measure.

Price, \$5 00 . With Ratchet Stop, $8 \mathbf{5 0}$. Morocco Case, \$0 $\mathbf{5 0}$.

This Caliper is shown full size in cut, and measures all sizes less than an inch by thousandths of an inch.

This Caliper is also made to measure all sizes less than twenty-five millimetres by hundredths of a millimetre. When so made, the table of decimal equiralents is omitted.

MICROMETER CALIPER No. 16.

Price, $\$ 600$ With Ratchet Stop, $\$ 650$. Morocco Case, \$0 50.

This Caliper differs from Micrometer Caliper No. 15, Eng lish, only in being graduated to read to ten-thousandths as well as thousandths of an inch.

MICROMETER CALIPER No. 17.

English or Metric Measure.

Price, $\$ 550$. With Ratchet Stop, $\$ 60$. Morocco Case, \$0 50.
This Caliper differs from Micrometer Caliper No. 15, only in having a Clamp Screw which clamps the spindle and preserves the setting.

Wooden Handle. This Caliper is furnished, when desired, with a wooden hanclle attached to the bow. The handle is about 2 3-4" long. The Clamp Screw is provided with wings instead of a knurled head. Price, \$1 50, in addition to prices given above.

MICROMETER CALIPER No. 18.

> Price, $\$ 650 . \quad$ With Ratchet Stop, $\$ 700$. Morocco Case, $\$ 0$ 50.

This Caliper differs from Micrometer Caliper No. 17, English, only in being graduated to read to ten-thousandths as well as thousandths of an inch.

SOFT LEATHER

CASES FOR MICROMETER CALIPERS.

Price, - . . . 15 Cents.
These cases are convenient for those who wish to carry a Micrometer Caliper in the pocket.

Price, $\$ 600$ With Ratchet Stop. $\$ 650$.
Morocco Case, $\$ 0$ 50.
This Caliper differs from Micrometer Caliper No. 19, Eng. lish, only in being graduated to read to ten-thousandths, as well as to thousandths of an inch.

MICROMETER CALIPER No. 21.

MICROMETER CALIPER No. 22.

English or Metric Measure.

Price, 85 50. With Ratchet Stop, 8600. Morocco Case, \$o 50.

This Calljer differs from Nic!ometer Callper No. 19, only In having a Clamp screw, which eramps the spibdle and preserves the setting.

1 Inch

MICROMETER HEADS.

English or Metric Measure.

Graduated to read to thousandths of an inch.

Price, \$3 50. With Ratchet Stop, 8400 .

Graduated to read to thousandths and ten-thousandths of an inch.

Price, $\$ 450$.
With Ratchet Stop, \$5 0 .
These Micrometer Heads are readily attached to machines or tools, when fine adjustments are required.

Length, from lower end of barrel to shoulder, 3-4"; diameter, 3-8"
Metric Measure. This head is also furnished to read to hundredths of a millimetre.

MICROMETER CALIPER No. 23.

©. B. STANDARD GAUGE FOR SHEET AND PLATE IRON AFD STEEL.

Price, 85 00. With Ratchet Stop, $\$ 550$. Morocco Case, \$o 50.

The Caliper is shown full size in cut, and in graduated to show the weight of sheet or plate iron or steel in ounces per square foot. It measures all thicknesses less than 0000000, or approximately $1 / 2^{\prime \prime}$, each of the divisions on the thimble indicating an ounce and each division on the barrel, 20 ounces.

By the table of equivalents stamped on the frame of the Caliper, the gauge number of the sheet or plate can be quickly determined when its weight per square foot ham been ascertained.

Special descriptive circular sent on application.

MICROMETER CALIPER No. 30.

English or Metric Measure.

> Price, 8800 With Ratchet Stop, 8850. Morocco Case, 8075 . Patented August $16,1587$.

This Calliper measures all slzes less than two inches by thousamilhin of an luch. The edges of the measuring surfhees are not leveled but left sifuare.

This (alliver is also made to mensure all sizes less than fifty millimetres hy hundredthe of a millimetre. When so made the talble of decimal equivalents is omitted.

MICROMETER CALIPER No. 31.

English or Metric Measure.

Price, $\$ 850$ With Ratchet Stop, $\$ 90$. Morocco Case, so 75.
Patented August 16, 1887.
This Callper differs from Micrometer Caliper No. 30, onls In having a clamp serew which chanps the spindle and preserves the setling.

MICROMETER CALIPER NO. 32.

Price, $\$ 90$. With Ratchet Stop, $\$ 950$. Morocco Case, \$o 75.
Pratented August 16, 1887.
This Caliper differs from Micrometer Caliper No. 3n, only in being graduated to read to ten-lhousaniths as well as thousandthe of an inch.

MICROMETER CALIPER No. 33.

Price, $\$ 9$ 50. With Ratchet Stop, $\$ 1000$. Morocco Case, \$o 75.
Patented August 16, 1887.
This Caliper differs from Micrometer Caliper No. 32, only in having a Clamp screw which clamps the spindle and preserves the setting.

A Standard Gauge, to be used in adjusting the Caliper, is sent with each one of the above.

847

MICROMETER CALIPER No. 38.
 English or Metric Measure.
 Price, 860 . With Ratchet Stop, 8050. Morocco Case, \$0 75.

This Caliper is shown nearly full size and measures all Nizes above one inch and less than two inches by thousandths of ant inel.
The outer end of the Prame is the same size as the meas. uring splatle and the edges of the measuring surfaces are not beveled but are left spuare. It gauges under a shoulder or merasures a smatl projection on a plaín surface.

This Caliper is also made to mensure all sizes between twenty-lle and fifty millimetres liy hundreiths of a milli. metre. When so made, the table of decimal equivalents is omitted.

MICROMETER CALIPER No. 39. English or Metric Measure.

Price, $\$ 6$ 50. With Ratchet Stop, $\$ 7 \mathbf{0}$. Morocco Case, \$0 75.
This Caliper differs from Micrometer Callper No. 38, only In having a Clamp Screw which clamps the syindle and preserves the setting.

MICROMETER CALIPER No. 40.

Price, $\$ 7$. With Ratchet Stop, $\$ 750$. Morocco Case, \$o 75.
This Caliper differs from Micrometer Caliper No. 38, English measure, only in being graduated to lead to tenthousandths as well as thousandths of an inch.

MICROMETER CALIPER No. 41.

Price, $\$ 750$ With Ratchet Stop, $\$ 8 \infty$. Morocco Case, \$0 75.
This Caliper differs from Micrometer Caliper No. 40, only in having a Glamp Screw which clamps the spindle and preserves the setting.

A Standard Gauge, to be used in adjusting the Caliper, is sent with each one of the above.
349

MICROMETER CALIPER No. 45.
 English or Metric Measure. Price, $\$ 800$ With Ratchet Stop, 8850. Morocco Case, so 75.

Patented Aug. 16, 1887; July 2.J, 1640; Dec. 30, 1302.
This Calliper ls shown nearly full size and measures all sizes lese than two inches liy thousanditio of an meh. It is simplar In general design to the Nos. 8 and 10. This Caliper in also made to measure all sizes legs than fift millimetres lis hundruiths of n millimetre. When so made, the table of dicimal equivalents is omitted.

Evely Callper is provided with a clamp ring which clamps the ppindle and preserves the setting.

MICROMETER CALIPER No. 46.

Price, 890.
 With Ratchet Stop, $\$ 950$. Morocco Case, \$0 75.

Patented Aug. 16, 1N87; July 23, 1N:10; Dec. 30, 1902.
This Callper differs from Mierometer Calijer No. 45, English measure, only in being gradunted to read to tenthousandths as well as thousandths or an fuch.

MICROMETER CALIPER No. 4%. English or Metric Measure. Price, $\$ 60$. With Ratchet Stop, $\$ 650$. Morocco Case, \$o 75.
 Patented July 29, 1890; Dec. 30, 1 1022.

This Caliper, similar in general design to No. 8, measures all sizes above one fich and less than two inches, by thousandths of an ineh. The outer end of the frame is the samesize as the measuring spindle and the edges of the measuring surfaces are left square.

Every Caliper is provided with a clamp ring which clamps the spindle and preserves the setting.

This Caliper is also made to measureall sizes above 25 and less than 50 millimetres liy hundredthe of millimetre. When so made, the table of decimal equivalents is omitted.

MICROMETER CALIPER No. 48.

Price, $\$ 70^{\circ}$. With Ratchet Stop, $\$ 750$. Morocco Case, \$o 75.
Patented July 2?, 18:9) ; Dec. 30, 1902.
This Callper differs from. Micrometer Caliper English measure, only in leing graduated to repe' thousandths as well as thousandths of an inch.

[^9]

MICROMETER CALIPER No. 50

English or Metric Measure.

Price, $\$ 7 \infty$. With Ratchet Stop, $\$ 750$. Morocco Case, $\$ \mathbf{8}$.
353

MICROMETER CALIPER No. 55.

English or Metric Measure.

Price, with Standards, $\$ 4$. ∞. With Ratchet Stop, 81450 . Price, without Standards, 810 00. With Ratchet Stop, 8 zo 50.

This Micrometer Caliper is shown about one-half size.
It measures all sizes from $8^{\prime \prime}$ to $6^{\prime \prime}$ in length and $6^{\prime \prime}$ in diameter by thousandths of an inch, but one-half and onequarter thousandthe are casily estimated.
Three anvils are furnished; the long anvil measures from $3^{\prime \prime}$ to $4^{\prime \prime}$, the intermediate from $4^{\prime \prime}$ to $5^{\prime \prime}$, and the short one from 5^{n} to $b^{\prime \prime}$.

Each anvil is provided with separate means of adjustment for wear. They are easily and quickly inserted in the frame, and are held solidly to their bearings by a knurled nut.

Means of adjustment for the measuring screw are also provided.

Thits Callper is also made to measure all sizes above 75 and less than 150 millimetres by hundredths of a millimetre.

Standards.

A set of three Standards is furnished when desired. Price, per Set, $\$ 4 \mathbf{\infty}$.

MICROMETER CALIPER No. 5%.

English or Metric Measure.

Price, with Standards, $\$ 30$. With Ratchet Stop, 83050. Price, without Standards, $\$ 2000$. With Ratchet Stop, 80050.

This Caliper differs from Micrometer Caliper No. 55 only in that it measures all sizes from $6^{\prime \prime}$ to $12^{\prime \prime}$ in length and $\mathbf{1 8}^{3}$ in diameter by thousandths of an inch.

Six anvils, or measuring points, are furnished; and measure respectively, $11^{\prime \prime}$ to $12^{\prime \prime}, 10^{\prime \prime}$ to $11^{\prime \prime}, 9^{\prime \prime}$ to $10^{\prime \prime}, 8^{\prime \prime}$ to $9^{\prime \prime}, 7^{\prime \prime}$ to $8^{\prime \prime}$ and $6^{\prime \prime}$ to $7^{\prime \prime}$.

Each anvil is provided with separate means of adjustment for wear.

This Caliper is also made to measure all sizes above 150 and less than 300 millimetres by hundredths of a millimetre.
,

Standards.

A set of six Standards is furnished when desired.
Price, per Set, $\$ 1000$.

[^10]

MICROMETER CALIPER No. 64.

English or Metric Measure. Price, $\$ 3500$.

This Cillper, similar in design to Micrometer Caliper No. an, is made to measure all sizes to twelve inches in length and six finches in diameter by thousandths of an inch.

MICROMETER CALIPER No. 68.

English or Metric Measure. Price, \$45 0 .

This Caliper, Nimllar in design to Mirrometer Caliper No. foo, is maile to measure all sizes to twenty-four inches in leligth and wix inches in diameter by thousindths of an thell.

PAPER GAUGE
 MICROMETER CALIPER No. 70. English or Metric Measure.

This Paper Gauge Micrometer Caliper is shown full size and measures all sizes less than three-eighths of an inch, by thousindthe of an inch.
In measuring the thickness of paper, cardboard, shect rubber or other yielding substances, it is advantageous to use Micrometer Calipers provided with discs or washers on the ends of the measuring spindle and adjusting serew. The comparatively large sizes have less tendene press the objects measured and enable accura ments to be quickly obtained.
This Caliper is also made to measure all
ine millimetres by hundredths of a millim
ade, the table of decimal equivalents is on

PAPER GAUGE

 MICROMETER CALIPER No. 71.

 MICROMETER CALIPER No. 71.}

English Measure.
Price, $\$ 5$ © . In Morocco Case, $\$ 5 \mathbf{5 0}$.

This Paper Gauge Micrometer Caliper, or Micrometer Caliper with Large Measuring Surfaces, shown full size in cut, is particularly well adapted for carrying in the pocket. It measures all sizes less than one-quarter inch by thousandths of an inch.

In measuring the thickness of paper, cardboard, sheet rubber, or other yielding surfaces, it is advantageous to use Micrometer Calipers, provided with dises or washers on the ends of the measuring spindle and adjusting screw. The comput tively dency ta ebrepres 4 leet measured, and be quickly

MICROMETER CALIPER No. 74.

Sheet Metall Gauge.

Price, $\$ 5$ 50. Morocco Case, $\$ \mathrm{So} 50$.
This Micrometer Caliper, shown full size, is recommended as especially convenient for sheet metal workers and handlers.
By placing the middle finger of the right hand through the ring, the Caliper is readily held at right angles to the sheet to be measured and readings made while in this position. The thimble can be operated by the forefinger and thumb of the same hand.

The Caliper measures all sizes less than four-tenths of an inch by one-half thousandths of an inch, but one-quarter thousandths are readily estimated.

To facilitate the reading of the Caliper while held in position, the one-half thousandths readings are taken from the dial at the top of the spindle, the reading wing indicated the pointer; and the twenty-five thonsindt reading 4 those corresponding to the readings gutivime of an on, nary Micrometer Caliper, are takeffor of the frame.
The decimal equivalents stamped or venient and render possible thidimm readings in 8ths, 16 ths, 32 ds and 148 ot

MICROMETER CALIPER No. 75.

English or Metric Measure.

Price, in Cherry Case, 81500.

This Caliper is shown half size in cut and measures all sizes less than one-half inch by,ten-thousandthe of an inch. The measurements can be read directly from the barrel; the screw has fifty threads and the barrel is divided into two hundred equal parts.
This Caliper is found of service to wire drawers, watchmakers and others who desire fine measurements, and whose work is of such a class that a Micrometer Caliper can be used when placed on a bench.

This Caliper is also made to measure all sizes less than thirteen millimetres by hundredths of a millimetre.

MICROMETER CALIPERS Nos. 83, 84, 85 and 86.
 ENGLISH OR METRIC MEASURE.

- No. 83. Range, $2^{\prime \prime}$ to ${ }^{\prime \prime \prime}$ by thousandths of an inch. Price, $\$ 600$. With Ratchet Stop, $\$ 650$. Standard for Adjusting Caliper, $\$ \mathbf{1} \mathbf{0 0}$.
No. 84. Range, $3^{\prime \prime}$ to $4^{\prime \prime}$ by thousandths of an inch. Price, $\$ 650$. With Ratchet Stop, $\$ 700$. Standard for Adjusting Caliper, \$1 15 .
No. 85. Range, $4^{\prime \prime}$ to $5^{\prime \prime}$ by thousandths of an inch. Price, $\$ 7$ 25. With Ratchet Stop, $\$ 775$. Standard for Adjusting Caliper, \$1 35 .
No. 86. Range, $5^{\prime \prime}$ to $6^{\prime \prime}$ by thousandths of an inch. Price, $\$ 8$. With Ratchet Stop, $\$ 850$. Standard for Adjusting Caliper,_\$1 50 .

These Micrometer Calipers are made to meet the demand for an inexpensive, yet accurate measuring tool. They are more convenient for general use than the bar Micrometer or Vernier, as they can be more readily set for the differ. ent measurements and are more eas. ily handled where rapid measurements are required.
The frame is of I section, thus combining the greatest rigidity and strength with lightness.

Metric Measure.
These Calipers are also made to read to
dredths of dredths
limetre Digtized by Google

SCREW THREAD MICROMETER CALIPER.

This Caliper is intended for the accurate measurement of V threads on screws, standard screws, tape, thread ganges etc., by measuring the actual thread.

The distinctive feature in the construction of this Calfper is that the end of the movable spindle is pointed and the fixed end or "anvil" is V shaped. Enough is taken froms the end of the point and the bottom of the V in carrion down low enough, so that they will not reat on the iwhem or top of the thread to be measured but on the cut asrlace. As the thread itself is measured, it will tre seren that the actual outside diameter of the piece doem not enter ints, consideration.

As we measure one-balf of the depth of the thread frosin the top, on each side, the diameter of the thirgal $n=$ is,di. cated by the Caliper, or the piteh diambure, in the: lull nize of the thread less the depth of one thread.

This depth may he found as follows:

As the U. S. standard thread is flatter 1.4 of ite own depth on top, it follows that the piteh diameter of the 4,5 is increased $1-8$ on each side, equalling 14 ,f the whenle:
 . 6495 , which is $3-4$ of . 666 .

When the point and anvil are in contiant tise 9 rejprenemow a line drawn through the plane $A B$

and if the caliper is opened, say to arac), it representes the distance of the two planes. .5N "apart.

While the movable point measures afl piturbs. the fixed
 to measure a 4 pitch tbread it would be 1 cos wide at the up to measure a 24 pitch thread and if midic to meabure a 24 pitch thread it would be go gmall that the theard nomid mot obtain a proper bearing in the anvil. Thus tach caliper in limited in the range of threads that the ansil ran mearure and in making inquiries, or giving orders, it cu-tapurere nill give information as to the range of threade hat they wish to measure, we will advise as tw the caliper or calipera bebt suited to measure that range.

TABLE

FOR U8E II CONAECTION WITE

Brown \& Sharpe Mfg. Co.'s Screw Thread Micrometer Oaliper.

READING OF CALIPER

For " V " Thrends $=1$ - - ${ }^{86}{ }_{P}^{6}$
" V " TEREADS.

Diam.	Plich.	Cullimer Keadiag.		Diam.	Pitch.	Caliper Reading.	
I)	P	$\mathrm{O}-\times \mathrm{Prit}$	${ }^{868}$	1)	P	D- $-\frac{866}{P}$	$\frac{.866}{P}$
	64		. 0135	1.4	24	. 2139	. 03.31
	62		. 0140	1.4	20	.2067	. 0433
	60		. 0144	5.16	20	. 2689	. 0433
	58		. 0149	5.16	18	.2644	. 0481
	56		. 0155	3.8	18	. 3269	,0481
	54		. 0160	3.8	16	. 3209	. 0541
	52		. 0167	7.16	16	. 3834	. 0541
	80		. 0173	7.16	14	. 3756	.0619
	48		. 0180	1.2	14	. 4381	. 0619
	46		. 0188	1.2	13	. 4334	. 0666
	44		. 0197	1.2	12	. 4278	. 07×2
	42		. 0206	9.16	14	. 5006	. 0619
	40		. 0217	9.16	12	. 4903	. 0722
	38		. 0228	5.8	11	. 5463	. 0787
	36		. 0241	5.8	10	. 5384	. 0866
	34		. 0255	11.16	10	. 6009	. 0866
	32		.0271	3.4	10	. 6634	. 0866
	30		. 0289	7-8	9	. 7788	. 0962
	28		. 0309	1	8	. 8918	. 1082
	26		. 0333	11.8	8	1.0168	. 1082
				$11-4$	7	1.1263	. 1237
				11.2	6	1.3557	. 1443

As there is no standard of diameter for the finer pitches, the columns for diameter and caliper reading are left blank. The column on the right gives the number to be subtracted from the diameter to obtain the caliper reading.

TABLE

FOR USE IN CONFECTION WITH

Brown \& Sharpe Mfg. Co.'s Screw Thread Micrometer Caliper.

READING OF CALIPER

For U. S. Threads $=$ D - $\frac{6495}{P}$
U. S. STANDARD THREADS.

Diam.	Pitch.	Caliper Reading.		Diam.	Pitch.	Caliper Reading.	
1)	P	D- $\frac{6495}{P}$	$\frac{.6495}{P}$	D	P	$\mathrm{D}-\frac{6495}{\mathrm{P}}$. $\frac{6495}{\mathrm{P}}$
	64		. 0101	1.4	20	. 2176	. 0324
	62		. 0105	5-16	18	. 2765	. 0360
	60		. 0108	3-8	16	. 3344	. 0406
	58		. 0112	7-16	14	. 3911	. 0464
	56		. 0116	1.2	13	. 4501	. 0499
	54		. 0120	9.16	12	. 5084	. 0541
	52		. 0125	5.8	11	. 566	. 0590
	50		. 0130	3-4	10	. 6851	. 0649
	48		. 0135	7-8	9	. 8029	. 0721
	46		. 0141	1	8	. 9188	. 0812
	44		. 0148	11.8	7	1.0322	. 0928
	42		. 0155	11.4	7	1.1572	. 0928
	40		. 0162	$13-8$	6	1.2668	. 1082
	38		. 0171	11.2	6	1.3918	. 1082
	36		. 0180	$15-8$	$51 / 2$	1.507	.1180
	34		. 0191	$13-4$	5	1.6201	. 1299
	32		. 0203	17.8	5	1.7451	.125
	30		. 0217	2	41/2	1.8557	. 1
	28		. 0232	$21-2$	4	2.3376	. 1
	26		. 0250	3	$31 / 2$	2.8145	. 18
	24		. 0271	31.2	$31 / 4$	3.3002	. 195
	22		. 0295	4	3	3.7835	.2164

As there is no standard of diameter for the finer pitches the columns for diameter and caliper reading are left blank The column on the right gives the number to be subtracted from the diameter to obtain the caliper reading.

INSIDE MICROMETER GAUGE.

English or Metric Measure.

No. 799.
Price, in Morocco Case, $\$$
The Inside Micrometer Gauge, shown about two-thirds size in cut, is designed for making internal measurements, as in measuring rings, cylinders, setting calipers, comparing gauges, and work of a similar character. It is also well adapted for measuring parallel surfaces.
The Gauge consists of a holder provided with a micrometer screw and thimble. The screw has a movement of $1-2^{n}$; and, by the use of the extension rods furnished, measurements from $3^{\prime \prime}$ to $6^{\prime \prime}$ can lie made by thousandths of an inch.
The extension rods vary liy $1-2^{\prime \prime}$, and each rod is provided with an adjusting nut and a check-nut, which are set to obtain the proper measurement of the given rod, and should be adjusted only when the point of that rod has become worn.
Provision is made for adjustment to compensate for wear of the screw and measuring surfaces. The measuring surfaces are hardened.
Metric Measure. This Inside Micrometer Gauge is also made to measure all distances from $70 \mathrm{~m} / \mathrm{m}$ to $190 \mathrm{~m} / \mathrm{m}$ by hundredths of a millimetre.

MICROMETER GAUGES.
 English or Metric Measure.
 INSIDE

 =

These Gauges consist of a holder with a micrometer screw and thimble graduated to read to $.001^{\prime \prime}$.
The extension rods are graduated by a series of angular grooves of a form and depth that allow the clamping fingers to spring in, and the adjustments quickly Metric Measures. These Gauges are also made to read to $1-100 \mathrm{~m} / \mathrm{m}$.

	Number of Rods.	Range.	Price in Case.
	5	$21-2^{\prime \prime}$ to $10^{\prime \prime}$ 800 A	6
801	7	$70 \mathrm{~m} / \mathrm{m}$ to $250 \mathrm{~m} / \mathrm{m}$	$\$ 450$
801 A	8	$21-2^{\prime \prime}$ to $13^{\prime \prime}$	450
802	7	$70 \mathrm{~m} / \mathrm{m}$ to $310 \mathrm{~m} / \mathrm{m}$	550
802 A	7	$8^{\prime \prime}$ to $32^{\prime \prime}$	550

MICROMETER DEPTH GAUGES.

English or Metric Measure.

No. 810. $2^{\prime \prime}$ Base. Price, 84 50. In Morocco Case, 850. No. 812. $4^{\prime \prime}$ Base. Price, \$5 ∞. In Morocco Case, 8550.

869

DECIMAL EQUIVALENTS

OF PARTS OF AN INCH.

TABLE OF DECIMAL EQUIVALENTS

OF MITLTMETRES
 AND FRACTIONS OF MILLIMETRESS．

		mm．Iocbee．	
rto $=.00039$		20	${ }^{100}$
$\mathrm{r}^{3} \mathrm{O}=.00$		${ }^{88}{ }^{8}=.02559$	
$\mathrm{I}_{8} \mathrm{O}_{\mathrm{o}}=.00$		${ }^{80}{ }^{\circ} \mathrm{O}=.02598$	
$\mathrm{r}^{88} \mathrm{O}=.00157$	${ }^{380}{ }^{8}=.01417$	${ }^{8}{ }^{8}$	${ }^{988}$
$\mathrm{r}_{80}=.00$	． 01457	${ }^{\text {sis }}$（180 $=.02677$	
$\mathrm{r}_{80}=.00236$	${ }^{3} 8{ }_{8}=01406$	${ }^{\text {P㫛 }}=.02717$	$1=.0393$
17\％	${ }^{3} 80$	${ }^{10}$	2
$\mathrm{r}^{8}{ }_{10}=.00315$	${ }^{10} 80.01575$	號	$3=.1181$
＝	昭 $=01814$	${ }^{3} 8$	$4=.1574$
$18 \mathrm{l}=00394$	${ }^{2} 82$	${ }_{\text {r }}^{78}$	$5=.1968$
$1{ }^{10}$	${ }^{48}{ }^{\frac{3}{8}}=.01693$		6 ＝．2362
${ }^{12} 120000472$	新 $=01732$	${ }_{17}^{75}$	$7=.27559$
512			$8=.3$
${ }^{18}$		${ }^{17}{ }^{7} 8_{0}=.03032$	$9=.35$
	${ }^{4} 80$	${ }^{\text {P\％}}$	$10=.38370$
${ }_{1}^{10} 10.000830$	${ }^{480} 9$	${ }^{190} 9$	$11=.430$
${ }_{1} 170$	${ }^{49}{ }^{4} 0^{\circ}=.01920$	${ }^{80} 80.031$	$12=.4724$
${ }^{1}$			13
$1{ }^{18} 90.00748$	和碞 $=02008$	${ }_{88}^{80}{ }^{80}$	$14=.55118$
${ }^{20}{ }^{20} 0$	${ }^{\text {sion }}=0.0047$	${ }^{\frac{8}{180}}$	15
$8^{2 \%} 80.00827$		${ }^{\text {s }} 180$	16
$\mathrm{r}^{2} \mathrm{z}^{2} \mathrm{z}=.00866$	sito $=02126$		17
${ }^{2}$	${ }^{5} 5$	${ }^{\text {P80 }}$	$18=.70$
${ }^{\text {r }}$ 2\％${ }^{2}=.00945$	$\frac{5}{180}$	${ }^{\text {s }}$	$19=$
${ }_{1}^{2505}$	${ }^{\text {P\％}}$	${ }_{88}{ }^{8}$	20
${ }^{28}{ }^{28}$	${ }_{\text {sion }}$	${ }_{89}^{80}=.0350$	21
${ }_{1}^{270}$	${ }^{\text {590 }}$	，	$22=$
${ }^{2} 8{ }^{28}$			23
		${ }^{980} 0$	$24=$
${ }^{3} 80$	${ }^{\frac{8}{88} 8^{2}}=02441$		
${ }^{3} 180$		${ }^{\text {Pat }}=.03701$	$26=1.0$

FRENCH OR METRIC MEASURES.

The metric unit of length is the metre $=\mathbf{8 9 . 3 7}$ inches.
The metric unit of weight is the gram $=15.432$ grains.
The following prefixes are used for sub-divisions and multiples: $\mathrm{Milli}=\frac{1}{1000}, \mathrm{Centi}=\frac{1}{10}$, Deci $=\frac{1}{10}$, Deca $=10$, Hecto $=100$, Kilo $=1000$, Myria $=10,000$.

French and British (and American) Equivalent Measures.

MEASURES OF LENGTH.

FRENCH. 1 metre .3048 metre 1 centimetre $=3937$ inch. 2.54 centimetres $=1$ inch. 1 millimetre $=.03937$ inch, or nearly $1-25$ inch. 25.4 millimetres $=1$ inch. 1 kilometre $=1093.61$ yards, or 0.62137 mile. OF WEIGHT.
FRENCH.
1 gramme
.0648 gramme 28.35 gramme 1 kilogramme .4536 kilogramme

1 tonne or metric ton 1000 kilogrammes
1.016 metric tons 1016 kilogrammes

French.
1 litre ($=1$ cubic decimetre) $=$
OF CAPACITY.
$=15.432$ grains.
$=1$ grain.
$=1$ ounce avoirdupois.
$=2.2046$ pounds.
$=1$ pound.
$\{.9842$ ton of 2240 pounds.
$\{19.68$ cwt.
2204.6 pounds.
$=1$ ton of 2240 pounds.
28.317 litres
4.543 litres
8.785 litres

BRITISH AND U. 8.
$=89.37$ inches, or 3.28083 feet, 1.09361 yds.
$=1$ foot.

BRITISH AND U.S.

DESCRIPTION OF THE VERNIER AND ITS USE.

On the bar of the instrument is a line of inches numbered $0,1,2$ etc., each inch being divided into ten parts and each tenth into four parts, making forty divisions to the inch. On the sliding jaw is a line of division (called a Vernier, from the inventor's name) of twenty-five parts, numbered 0 , $5,10,15,20,25$. The twenty-five pars on the Vernier correspond, in extreme length, with twenty-four parts or twenty-four fortieths of the bar y consequently each division on the Vernier is smaller than each division on the bar by one thousandth part of an inch. If the sliding jaw of the Caliper is pushed up to the other, so that the line marked 0 on the Vernier corresponds with that marked 0 on the bar, then the two next lines to the right will differ from each other by one thousandth of an inch and so the difference will continue to increase, one thousandth of an inch for each
division, till they again correspond at the line marked 25 on the Vernier. To read the distance the Caliper is open, commence by noticing how many inches, tenths and parts of tenths, the zero point on the Vernier has been moved from the zero point on the bar. Now count upon the Vernier the number of divisions, until one is found which coincides with one on the bar, which will be the number of thousandths to be added to the distance read off on the bar. The best way of expressing the value of the divisions on the bar, is to call the tenths one hundred thousandths (.100) and the fourths of tenths, or fortieths, twenty-five thousandths (.025). Referring to the cut on preceding page, it will be seen that the jaw is open two-tenths and three quarters, which is equal to two hundred and seventy-five thousandths (.275). Now suppose the Vernier was moved to the right so that the tenth division should coincide with the next one on the scale, which will make ten thousandths (.010) more to be added to two hundred and seventy-five thousandths (.275), making the jaws open two hundred and eighty-five thousandths (.285).

In making inside measurements with the $6^{\prime \prime}$ Vernier and the Pocket Vernier Calipers, two and onehalf tenths or two hundred and fifty thousandths (.250) of an inch and with the $12^{\prime \prime}$ and $3^{\prime 2}$ terniers, three tenths or three hundred thop $\sqrt{s a}$ of an inch should be added to the pp on the Vernier side for the space occ caliper points, When the other sige o ment is used, no deduction is ne are two lines, one indicating inside? outside measurements.

POCKET

This Pocket Vernier Caliper is graduated on the front to read, by means of a vernier, to thousandths
of an inch. It is graduated on the back to 64ths of an inch. The jaws are of steel, hardened and ground, are $3-4^{\prime \prime}$ long, $14^{\prime \prime}$ wide when closed, and take inside as well as outside measurements. The Caliper measures to $111-16^{\prime \prime}$ outside diameter.
This Caliper is furnished graduated to millimetres in place of 64 ths of an inch, with a vernier to read
to 50 ths of a millimetre.
An explanation of the vernier is sent with each Caliper.

VERNIER CALIPERS.

These Calipers are graduated on the front to read, by means of a vernier, to thousandths of an inch. They are graduated on the back to 64ths of an inch. The jaws are hardened and ground and take inside as well as outside measurements. Points are placed on the bars and slides so that dividers can be set to transfer distances.
These Calipers are also furnished graduated on one side to read to 1-50th of a millimetre and to .001 of an inch on the other.
An explanation of the vernicr is sent with each Caliper.

An explanation of the vernicr is sent with, each Caliper.
No.
Aner. 682
686
688

GEAR TOOTH CALIPER.

This Caliper is for the purpose of accurately measuring the distance from top to pitch line, and thickness at pitch line of gear teeth.

It will measure all pitches from 20 diametral to 2 diametral.

The sliding jaw moves upon a bar graduated to read, by means of a Vernier, to thousandths of an inch. A tongue, moving at right angles with the jaws, is graduated in the same manner

Both the sliding jaw and tongue are provided with adjusting screws.

Metric Measure. This Caliper is also graduated to read to $1-50$ th of a millimetre and measures all pitches from $11-4 \mathrm{~m} / \mathrm{m}$ to $12 \mathrm{~m} / \mathrm{m}$.

877

UNIVERSAL DEPTH GAUGE.

No. 711, English Measure.

No. 712, Metric Measure.

SPRING
 DEPTH GAUGES.

No. 713. $2^{\prime \prime}$ Base. Price, 8 I 50.
No. 717. $4^{\prime \prime}$ Base. Price, $\$ 20$.
The cut shows the bead of the Depth Gauge together with a por. tion of the barrel and rod. It will measure to $3^{\prime \prime}$ in depth.

The base is about $7.16^{\prime \prime}$ wide and the rod about $1-8^{\prime \prime}$ in diameter.

A spiral spring in the barrel forces the rod against the bottom of the hole or recess to be measured and by use of the clamp screw the rod is securely locked in position.

The base and lower end of the rod are both hardened.

SPRING DEPTH GAUGE.

With Friction.

No. 725. $3^{\prime \prime}$ Base. Price, $\$ 225$.
This Gauge differs from No. 713 only in that the rod is held by a friction clutch that is free to move under pressure of the spiral spring and enables approximate settings to be quickly made.

BRown a Sharpemfa.Co:

No. '715, English Measure.
No. M'1515, Metric Measure.

Price, \$1 25.

The above is a full sized cut of the head and a portion of the blade of a $6^{\prime \prime}$ Rule Depth Gange.

The head can be conveniently held. It is made of steel $1-8^{\prime \prime}$ thick, hardened.

The blade is a $6^{\prime \prime}$ narrow tempered steel rule
The blade sent with the gauge is divided into, 64ths and 100 ths of inches.

Will furnish, if desired, blades dividen ints, 32nds and 64ths, or 50ths and 100the of inches.

This Depth Gange is also frrmished with n blade $15 \mathrm{c} / \mathrm{m}$ long, gradnated on orie corriar to $1-5 \mathrm{~m} / \mathrm{m}$ and on the other corner t o $1 \mathrm{~m} / \mathrm{m}$.

"BROWN \& SHARPE" SPRING DIVIDERS.

With Spring Nut.

No.	Size.	Prioe.
948	$21.2^{\prime \prime}$	\$1 15
${ }_{4} 50$		115
\%	4	140
054	5	140
956	6	175

With Solid Nut.

No.	Rize.	Price.
949	$21.2^{\prime \prime}$	\$100
951		100
963	4	125
955	5	125
957	6	160

The Spring Nut is a Spring Chuck with hardened jaws. It is positive in action when closing, the thread engaging the hardened screw on the slightest pressure. When the pressure is withdrawn, it slides freely on the screw.

DUPLICATE PARTS

For " Brown \& Sharpe" Spring Calipers and Dividers.

Leg, 35
Screw and Ball, 15
Solid Nut, 10
Spring, 25
Spring Nut, 25
Spring Nut Washer, 10
Thumb Attachment, 15

"BROWN \& SHARPE" OUTSIDE AND INSIDE SPRING CALIPERS.

Outside.

With Spring Nut.

OU'TSIDE.

No.	Size.	Price.	No.	Size.	Price.
	$\mathbf{9 2 0}$	$\mathbf{2} 1-\mathbf{2}^{\prime \prime}$	$\$ 115$	940	$3^{\prime \prime}$
922	3	115	$\$ 115$		
924	4	125	942	4	125
926	5	125	944	5	125
928	6	150	946	6	150

With Solid Nut.

OUTSIDE.

No.	Size.	Price.	No.	Si
921	$21.2^{\prime \prime}$	\$100	941	
923	3	100	943	
925	4	110	945	5
927	5	110	947	6
929	6	135		

"BROWN \& SHARPE"
 THREAD AND KEY-HOLE SPRING CALIPERS.

Key-Hole.

With Spring Nut.

REX

SPRING DIVIDERS.

With Spring Nut.

DUPLICATE PARTS

For Rex Calipers and Dividers.

SCREW ADJUSTING

FIRM JOINT CALIPERS.

Tempered.

	OUTSIIEE.		INSIDE.		
Nu.	Size.	Price.	No.	Slze.	Price.
1092	$4^{\prime \prime}$	\$090	1043	4"	8090
1033	5	95	1044	5	95
1034	. 6	100	1045	6	100
1035	8	125	1046	8	195
1086	10	150	1047	10	150
1087	12	175	1048	12	175
1088	14	200	1049	14	200
1089	16	225	1050	16	225
1040	18	250	1051	18	250
1041	20	275	1052	20	275
1042	24	350	1053	24	350

TRANSFER FIRM JOINT CALIPERS.

Tempered.

OUTSIDE.
INSIDE.

No.	Size.	Price.	xo.	Size.	Price.
	4	-			
1066	$4^{\prime \prime}$	\$1 10	1077	$4^{\prime \prime}$	8110
1067	5	125	1078	5	125
1068	6	135	1079	6	135
1069	8	160	1080	8	160
1070	10	185	1081	10	185
1071	12	210	1082	12	210
1072	14	235	1088	14	235
1073	16	260	1084		260
1074	18	285			
1075	20	335			
1076	24	410			

STANDARD STEEL RULES.

Our Shop Standards of Length were carefully compared by the Government Oficials with the Standards at Wash ington.

The mean errors were found to be: for the yard, . $00002^{\prime \prime}$ and for the metre .000005 M ., both being too long.

These Standards have been sub-divided with the greatest care and accuracy and Our Rules are as nearly exact copies as expert mechanical skill, aided by special machinery, can make them.

No.	Length.	Number of Graduations.	Price.
100	$1{ }^{\prime \prime}$	4 or 7	\$0 15
102	2	4, 7 or 9	25
104	3	1,2,4, 6 or 7	35
106	4	1, 2, 4, 6 or 7	45
108	6	1, 2, 4, 6 or 7	65
110	9	1, 2, 4, 6 or 7	100
112	12	1, 2, 4, 6 or 7	1. 25
114	12	5	250
116	18	1, 2, 4, 6 or 7	200
118	24	1,2,4, 6 or 7	275
120	24	,	500
122	36	1,2,4, 6 or 7	- 00
124	48	1, 2, 4, 6 or 7	800

STANDARD STEKI RULRS.

With Patent Red Gradartions

These Rules can be conveniently introdored into zmoret. countersinks and recesses of various tinds and are adaped for measuring their depth and width.
They are made of specific widths and the ends are graduated as follows: 2^{7} and $4^{\prime \prime}$ Rules to $3 ¥ n d s, 49 \mathrm{hs}$, 5 orks and 100ths of an inch; the $6^{7 \prime}$ to 24^{*} Rules to $z t b s, 3 \geq n d s, ~ t i z h s$ and 100ths of an inch; the $3^{\prime \prime}$ Rules are graduated to 3 3nds, 40ths, 48ths and 56 ths of an inch.

These Rules are furnished with No. 4 graduations onls.
For prices, see list of Standard Bules, page 392.

NARROW STEEL RULE.

No. 130. Price, 65 Cents.
We carry in stock a steel rule, not tempered, $6^{\prime \prime}$ long, about 11-16" wide and furnish it with Nos. $1,2,4,6$ or 7 graduations. This rule corresponds to the Standard Steel Rule but is lighter.

NARROW TEMPERED STEEL RULES.

Every Rule is Marked " Tempered."
These Rules are about $1.20^{\prime \prime}$ thick and about $7.32^{\prime \prime}$ wlde, and graduated on one corner of earh side only.

IMPROVEMENT IN STANDARD STEEL RULES.

1at Dot, $5 \delta \delta \delta^{\prime \prime}$ from line. Each Dot adde $\frac{1}{1000}$ 9 Spaces, $10 \frac{1}{6} \sigma^{\prime \prime}$ each.
Standard Steel Rules, with No. 7 Graduations, to and including $24^{\prime \prime}$ in length, furnished with this device when so ordered without additional cost.

This improvement consists of a series of graduations, at the end of a scale of hundredths, as follows:

Nine spaces of eleven-thousandths of an inch each; and a diagonal line of eight dots, the one nearest the edge of the rule being twelve-thousandths of an inch from the last line, the second thirteen-thousandths, and so on, each dot onethousandth of an inch further from the line than the one preceding.

By the use of the eleven-thousandth graduations, measurements, from one-tenth of an inch to any length on the scale, can be made by thousandths of an inch; and, by making use of the line of dots, dividers can be set by thousandths from one-hundredth of an inch to any part of the scale.

Hethod of Using. For measurements less than $100^{\prime \prime}$ use:
The long lines shown at the right for measurements that are multiples of 11.
The long lines and $1-100^{\prime \prime}$ space lines at the left, for measurements that are the sums of multiples of 10 and 11 .
The long lines and dots for measurements not included above.

The following messurements will illustrate the applica. tion of the foregoing :

Required Mesaurement.	Method of Obtaining Measurementa.		
	.011" Spaces.	. $0100 \mathrm{spaces}$.	Dots.
- . $051{ }^{\prime \prime}$	1	4	0
. 052	2	8	0
. 053	3	2	0
. 054	4	1	0
. 055	5	...	0
. 056	5	...	1
. 057	5	...	2
. 058	5	...	3
. 059	5	...	4
. 060	...	6	0

When using the eleven-thousandth spaces and the dots, remember that the space between the long line and first dot is the same as one $.011^{\prime \prime}$ space plus .001 " and reads $.012^{\prime \prime}$.

For measurements greater than $.100^{\prime \prime}$, multiply the thousaudths figure by 11, and subtract this result from the required measurement. Proceed as follows:

Place one leg of the dividers in the line corresponding to the figure multiplied by 11 and the other leg in the hundredths line, corresponding to the hundredths found in the difference.

For example: To measure $.736^{\prime \prime}$, multiply 6 by 11 , and subtract the result, 66 , from the distance to be measured-$.736-66=.670$.

Then place one leg of the dividers in the line registering the sixth $.011^{\prime \prime}$ space; this, as the first of these lines is 0 , will be the seventh line. Read back from this same 0 sixtyseven of the $1.100^{\prime \prime}$ spaces and the dividers will be open $.736^{\prime \prime}$.

Required 1.743". $1.743-33=1.710$. Place one leg of dividers in the fourth long line and the other in the 171st 1-100" line.

For prices, see page 392.

TEMPERED STEEL RULES.

These Rules are about $1.20^{\prime \prime}$ thick.
Every Rule is Marked "Tempered."

No.	Length.	$\left\lvert\, \begin{gathered} \text { Approximate } \\ \text { Whidh. } \end{gathered}\right.$	Numbor of Graduatione.	Price.
136	$1^{\prime \prime}$	29.64"	4 or 7	$5015{ }^{\circ}$
187	2	1.2	4,7 or 9	25
138	8	85.64	1, 2, 4, 6 or 7	85
189	4	19.82	1, 2, 4, 6 or 7	45
140	6	11.16	1, 2, 4, 6 or 7	65
141	- 9	83.64	1, 2, 4, 6 or 7	190
142	12	31-32	1, 2, 4, 6 or 7	125
143	18	1	1, 2, 4, 6 or 7	200
144	24	1	1, 2, 4, 6 or 7	250
145	36	1	$1,2,4,6$ or 7	500

TEMPERED STEEL RULES.

With Patent End Graduations.

Patented August 25, 1885.
These Rules are furnished from 2 to 12 inches in length, and with No. 4 Graduations only. They are graduated to 32nds of an inch on two ends of one side.

Prices are the same as given in the above list.

FLEXIBLE STEEL RULES.

Every Rule is Marked " Tempered."
Graduated on Onè Side Only.

No.	Length.	Approximate Width.	Number of Graduations.	Price.
149	4	$1.2{ }^{\prime \prime}$	10, 11, 12, 13 or 14	\$04i5
150	6	1.2	10, 11, 12, 13 or 14	65
151	9	1.2	10, 11, 12, 13 or 14	100
152	12	1.2	10, 11, 12, 13 or 14	125
153	18	3-4	10, 11, 12, 13 or 14	200
154	24	3-4	10, 11, 12, $13{ }^{\circ}$ or 14	275
155	36	$3-4$	10, 11, 12, 13 or 14	500

STANDARD STEEL RULES.

Metric and English Measure.

No. 181, 5 centimetres. No. 183, 10 centimetres. 25 c . 45 c .
First corner graduated to $1.2 \mathrm{~m} / \mathrm{m}$, second corner to $1 \mathrm{~m} / \mathrm{m}$, third corner to $1-64$ of an inch, fourth corner to $1-100$ of an inch.

No. $185,20 \begin{gathered}\text { centimetres. } \\ 85 \mathrm{c} .\end{gathered}$ No. 187,30 centimetres.
No. 189, 50 centimetres. No. 19r, 1 metre. $\$ 200$. $\$ 750$.
First corner, $5 \mathrm{c} / \mathrm{m}$ graduated to $1.2 \mathrm{~m} / \mathrm{m}$, the remainder of that corner together with second corner to $1 \mathrm{~m} / \mathrm{m}$; third corner, 2 inches to 1.64 , the remainder to $1-16$ of an inch; fourth corner, 2 inches to 1-100, the remainder to 1.50 of an inch.

STANDARD STEEL RULES.
 Metric Measure.

No. 180, 5 centimetres. No. 182, 10 centimetres. 25 c . 45 c .
First corner graduated to $1.2 \mathrm{~m} / \mathrm{m}$, the remaining cornorn to $1 \mathrm{~m} / \mathrm{m}$.

No. 184, 20 centimetres. No. 186, 30 centimetrem. 85 c . 8125
Five centimetres of first corner graduated to $1.2 \mathrm{~m} / \mathrm{min}$; the remainder of that corner, together with remaining coricion, graduated to $1 \mathrm{~m} / \mathrm{m}$.

No. 188, 50 centimetres, $\quad \$ 200.1$
Five centimetres of each end of first corner krsulintiol th, $1.5 \mathrm{~m} / \mathrm{m}$; the remainder of that corner, togethor with elw: remaining corners, graduated to $1 \mathrm{~m} / \mathrm{m}$.

No. 190, 1 metre, (N)
Five centimetres of each end of firut corric:r gralusital th, $1.2 \mathrm{~m} / \mathrm{m}$; the remainder of that corter, togetiver with, thes remaining corners, graduated to $1 \mathrm{~m} / \mathrm{mm}$.

TEMPERED 8TEEL RULES. Metric Measure. Every Rule is Marked "Tonotered."

First corner graduater to $1.2 \mathrm{~m} / \mathrm{m}$. rom
 $5 \mathrm{c} / \mathrm{m}$ only.

No. 196, 10 centimetrex
45e.

TEMPERED STEEL RULES.

Metric and English Measure.

INO. 205, so Centimetres, Price, 45 cents.
First corner graduated to 1.64 of an Inch, second corner to $1 \mathrm{~m} / \mathrm{m}$, third corner to 1.100 of an Inch, fourth corner to $1.2 \mathrm{~m} / \mathrm{m}$.

No. 206, 20 Centimetres, Price, 85 cts.
No. 207, 30 Centimetres, Price, 8125.
No. 208, 50 Centimetres, . Price, 20.
First corner graduated, $2^{\prime \prime}$ to $1-64$ of an inch, the remainder to 1.16 of an inch; second corner to $1 \mathrm{~m} / \mathrm{m}$; third corner, $2^{\prime \prime}$ to $\mathbf{1 - 1 0 0}$ of an inch, the remainder to $1-50$ of an inch; fourth corner to $1.2 \mathrm{~m} / \mathrm{m}$.

NARROW TEMPERED STEEL RULFS.
 Every Rule is Marked "Tempered."
 Metric Measure.

Graduated on one corner of each side only. First corner graduated to $1-2 \mathrm{~m} / \mathrm{m}$, second corner to $1 \mathrm{~m} / \mathrm{m}$.

No. 175, 10 centimetres. No. 176,15 centimetres.
45 c. 65c.

FLEXIBLE STEEL RULES.

Every Rule is Marked "Tempered."
Metric Measure.
Graduated on one side only. First corner to $1.2 \mathrm{~m} / \mathrm{m}$, second corner to $1 \mathrm{~m} / \mathrm{m}$.

No. 192, 10 centimetres. No. 193, 20 centimetres.
45c.
No. 194, 30 centimetres. $\$ 125$

85 c .
No. 195, 50 centimetres.
$\$ 200$

STEEL GEAR RULES.

No. 61. Price, \$3 0 .
This Rule is $12^{\prime \prime}$ long and has four lines of graduation upon each side, one each, as follows: 18, 20, 22, 24, 26, 23, 30, 32 parts of an inch whole length.

No. 78. , Price, $\$ 300$.
This Rule is $12^{\prime \prime}$ long and is graduated $1^{\prime \prime}$ only on each end, as follows: $6,7,8,9,10,11,12,14,16,18,20,22,24,26,28,30,32$, $34,36,38$ parts of an inch. The intermediate 10 "are blank, except that the inch lines are made clear across the Rule.

TEMPERED STEEL SHRINK RULES.

English Measure.

Every Rule is Marked "Tempered.".

'Number.	Shrink per Foot.	Length.	No. of Graduation.	Price.
201	$1.8^{\prime \prime}$	$121.8^{\prime \prime}$	4	\$175
211	1.8	121.8	2	175
212	1.8	241.4	4	350
213	1.8	$241-4$	2	350
214	1-8	121.8	4	175
221	1.8	241.4	4	350
203	3.16	123.16	4	175
222	3.16	123.16	2	175
223	$3-16$	$243-8$	4	350
224	3-16	$243-8$	2	350
204	1-4	121.4	4	175
225	$1-4$	121.4	2	175
226	$1-4$	2412	4	350
227	1-4	241.2	2	350
261	1.8	$61-16$	4	75
262	1.8	61 1-16	2	75
263	1.8	6 1-16	4	75
264	3-16	6332	4	75
265	3-16	63 -32	2	75
266	1-4	61.8	4	75
267	1.8	61.8	2	75

Nos. $214,221,263,264,265,266$ and 267 are graduated as Standard Rules on one side and Shrink Rules on the other. The others are graduated as Shrink Rules on both sides. For Graduations, see page 391.

SQUARE STEEL RULES.

位

No.	Leagth.	Number of Graduations.	Prico.
230	$3^{\prime \prime}$	15,16 or 17	45
230	4	15,16 or 17	45
234	6	15,16 or 17	60

These Rules are divided in parts of inches as follows:
No. 15 Graduation. No. 16 Graduation. No. 17 Graduation.

1st cor. 8	16	16
2 d cor. 16	82	50
8 d cor. 32	64	64
4th cor. 64	100	100

TRIANGULAR STEEL RULES.

(1)

No.	Length.	Number of Graduations.	Price.
240	$3^{\prime \prime}$	20,21 or 22	50 242
244	4	20,21 or 22	70
246	12	20,21 or 22	100

These Rules are divided in parts of inches as follows: No. 20 Graduation. No. 21 Graduation. No. 22 Gruduation.

1st cor.	16	16
2d cor.	64	82
8d cor.	100	64

STANDARD STEELYARD MEASURE.

No. 215. Price, $\$ 30$.
This Measure is $\mathbf{1}^{\prime \prime}$ wide, $1 \mathrm{~s}^{\prime \prime}$ thick. It is divided into inches and 1-8ths of an inch on one side, and into $1-16,1-8$, 1-4, 3-8, 1-2, 5-8, $3-4$ and $7-8$ of a yard on the other.

401

6-INCH RULE WITH SLIDE.

This Rule is $6^{\prime \prime}$ long, about $9-16^{\prime \prime}$ wide, $1-16^{*}$ thick, and furnished divided into parts of an inch as follows:

No. I Graduation.
1st cor. 10, 20, 50, 100
2nd cor. 12, 24, 48
3rd cor. 14, 28
4th cor. 16, 32, 64
No. 4 Graduation.
1st cor. 8
2nd cor. 16
3rd cor. 32
4th cor. 64

No. 2 Graduation.
8
10, 20, 50, 100
12, 24, 48
16, 32, 64
No. 7 Graduation.
16
32
64 100

In ordering, specify which graduation is required.

SLIDE CALIPER RULE.

English or Metric Measure.

$\begin{array}{lll}\text { No. 365, } & \text { ENGLISE, } & \text { Price, 8125. } \\ \text { No. 367, } & \text { METRIC, } & \text { Price, 8125. }\end{array}$
The Slide Caliper Rule, shown in cut, is of steel, abont $43-16^{\prime \prime}$ long and $1-16^{\prime \prime}$ thick. It is graduater on both rorners to $32 n d s$ of an inch.

The jaws are 3-8" deep.
The Metric Rules are graluated to half-millimetres.

STEEL CALIPER RULES.

English or Metric Measure.

INO. 360, $5^{\prime \prime}$, . . Price, 2∞.
No. $36 \mathrm{I}, 4^{\prime \prime}$, . . . Price, 8250 .

- No. $362,75 \mathrm{~m} / \mathrm{m}$, . . Price, 820 .

170. $363,100 \mathrm{~m} / \mathrm{m}$, . . Price, $\$_{2} 50$.

These Rules are found convenient for use in the stock room or store, in selecting sheet or bar stock, wire, tubing. etc.
They are made in two sizes, $8^{\prime \prime}$ or $75 \mathrm{~m} / \mathrm{m}$, and $4^{\prime \prime}$ or 100 m / m, when closed ; and about $1.8^{\prime \prime}$ thick. The Slide of the $8^{\prime \prime}$ or $75 \mathrm{~m} / \mathrm{m}$, can lie drawn out to measure $21.4^{\prime \prime}$, or $50 \mathrm{~m} / \mathrm{m}$; and of the 4^{\prime} or $100 \mathrm{~m} / \mathrm{m}$, to measure $31.4^{\prime \prime}$ or $75 \mathrm{~m} / \mathrm{m}$.

The English Rules are divided into Parts of an Inch as follows:

	A	B		C	D
1st cor.	8, 14, 28	8,	14, 28	8	8
2d cor.	12, 24, 48	12,	24, 48	16	16
8d cor	16, 32, 64	16,	32, 64	82	32
4 th cor	20, 50, 100	20,	50, 100	64	64 64 100
slide,	32 \& 64	64	\& 100	32 \& 64	64 ± 100

The Metric Rules are graduated to millimetres and hairmillimetres.

BUTTON GAUGE.

$$
\text { No. 394, Price, } \infty \text { oo. }
$$

This differs from the Steel Caliper Rule, only in that the outside is graduated to 16 ths, 20 ths, 32 nds and 40 ihs of an inch and the slide to 40 ths and 80ths of an inch.

BTATDARD STEFL STRAIGHT EDGE8.

These Straight Edges are madr. f:011 : i, \& law utair on Steel; and erery caré ie takew W iln-ure iw:

No.	Lensth.	Widt	Apintuxatual. I Hocking:	Fery
370	6^{*}	1 '	\%14.	(1) 8
37	9	11 1-	514	(A)
374	12	11.4	¢14	二゙
376	18	$11 \pm$	\% ${ }^{2}$	(ω_{1}
378	24	\cdots	-	\%
380	36	-1.2	- 44	\cdots
382	48	3	if	$1 \geq$ (α^{\prime}
384	60	3	1.]s. (m)
386	72	3	1.	

BEVELED STEEL STRAIGHT EDGES.

BLSS.MEGCOPTOVRI

The beveled edge is $1-16^{\prime \prime}$ thick. Only one edge is beveled.

No.	Length.	Width.	Approximate Thickness.
400	$12^{\prime \prime}$	$13-8{ }^{\prime \prime}$	$3.16^{\prime \prime}$
402	18	$13-4$	3.16 1.4
404	21		1.4
406 408	36		1.4
408 410	48 60		1.4
412	72	31.8	

HARDENED STEEL STRAIGHT EDGES.

These Stralght Eilges are like the tongues of the Hardened sted Try Squares and are hardened on the edges only.

Si.	Lenath.	Whith.	Approximate Thlokness.	Price.
101	37	$1.1 .16^{\prime \prime}$	1.16	8060
4:2	$51:$	11.8	${ }_{5} 8.64$	100
$4: 4$	${ }_{11} 1$	13.8	5.64	125
43	11134	13.4	5.64	200
4.8	14	2.1 .16	5.64	300
430 $4: 32$	17	27.16	5.64	350
4.32	20 27 27	${ }_{3}{ }^{7-8}$	7.64	450
4331	33	$\begin{array}{ll}3 & 1-4\end{array}$	1-64	700 900
435	3:	35.8	1-8	1200

DRAUGHTSMEN'S STEEL STRAIGHT EDGES.

No.	Length.	Width.	Approximate	Price,
450	$15^{\prime \prime}$	$11.4{ }^{\prime \prime}$	3-64"	\$0 90
453	18	11.2	3-64	100
4.4 456	24 30	112 13	3.64	1.50
4.68 458	30	${ }_{2}^{13-4}$	3-64	2 3
460	42	21.4	$1-16$	300 400
462	48	212	1.16	660
464 465	60 72	2 2 2	5.64	800
465	72	$23-4$	5.64	1000

TRIANGULAR METALLIC BCALES.

Patented Dec. 16, 1879.
These Patent Triangular Metallic Scales are of the size and shape of the common 12" Triangular Boxwood Scales. They are made from brass tubing with the ends closed, nickeled with a dull finish and weigh less than 31.2 ounces.

The liability of the wood scales to crack, warp or twist, the chipping of their edges and their variation from stand. ard measurement, are well known to all who have used them. These oljections we have overcome in the new scales. The ends of these seales are covered with hardened steel plates which slightly raise the scales from the paper
No. 63 M , Price, $\$ 250$. $12^{\prime \prime}$, divided to scales of $1.8,1-4,3-8$, 1-2, 3-4, 1, 1 1-2, 2, 3 and 4 inches to the foot and 16ths of an inch.
No. 64 M , Price, $\$ 250$. 12", divided to scales of 3-16, 3-32, 1-8, $1-4,3-8,3-4,1-2,1,11-2$ and 3 inches to the foot and 16ths of inches.
No. 73 M , Price, $\$ 250$. 12", divided on one edge each to 10ths, 20ths, 30ths, 40ths, 50the and 60ths of inches; or to 20ths, $30 \mathrm{ths}, 40 \mathrm{ths}, 50 \mathrm{ths}, 60 \mathrm{ths}$, and 80the of inches
In ordering No. 73 M , state whether the divisions 10 to $\mathbf{6 0}$ or 20 to 80 are wanted.

TRIANGULAR BOXWOOD SCALES.

These Scales are Engine Divided.
No. 65, for Architects and Mechanical Draughtsmen.
Nos. 73B and 75, for Railroad Engineers and Land Surveyors.
No. 65, \$1 50. ${ }^{6^{\prime \prime}}$ Triangular Boxwood Scale, divided to scales of $3.32^{\prime \prime}, 1-8^{\prime \prime}, 3-16^{\prime \prime}, 1-4^{\prime \prime}, 3-8^{\prime \prime}, 3-4^{\prime \prime}, 1-2^{\prime \prime}, 1^{\prime \prime}, 11-2^{\prime \prime}$ and $3^{\prime \prime}$, to the foot and 16ths of an inch.
No. 73 B, $\$ \mathbf{2} \mathbf{\infty}$. 12" Triangular Boxwood Scale, divided on one edge each to 10ths, 20ths, 30ths, 40ths, 50ths, 60ths of an inch; also divided 20ths, 30ths, 40ths, 50ths, 60ths 70ths, 80ths.
No. 75, \$1 50. $\mathbf{6}^{\prime \prime}$ Triangular Boxwood Scale, one edge each to $20 t \mathrm{hs}, 30 \mathrm{ths}$, 40 ths , 50 ths , 60 f 80ths of an inch.
When ordering Nos. $\mathbf{i 3 B}$ or 75 , specify which
Is wanted.

IMPROVED

SCALES FOR DRAUGHTSMEN.

The form of theae acres makes them very convenient for many purposes. Those we have in stock are made of stecl, nlekel plated; a $12^{\prime \prime}$ scale welghs but 21.2 oz. Each scale has one kinal of griduation, the same on both sides, or two kinds, one on each side. This relieves the draughtaman from the constant care and loss of time required to avoid using the wrong graduation, when there are many kinds on the scale.

List of Scales for Architects.

Price, $6^{\prime \prime}$ scales, $\$ 100 ; 12^{\prime \prime}$ sr'ales, $\$ 125$.

One Graduation.

Twelve Inches Long.

No. 275,3 "	$=1$ foot.	No. 279, 3-4' $=1$ foot.
No. $276,2^{\prime \prime}$	$=1$ "	No. 280, 1.2" $=1$
No. 277, $11.2{ }^{\prime \prime}$	$=1 \quad$ "	No. 281, $14^{\prime \prime}=1$
No. $275,1^{\prime \prime}$	$=1$	No. 282, 1-8 ${ }^{\prime \prime}=1$
Six Inches Long.		
No. 285, $1.2 \prime$	$=1 \mathrm{foot}$.	No. 288, 1-8 ${ }^{\prime \prime}=1$ foot
No. 2*6, 1-4"	$=1$ "	No. $289,8.8 z^{\prime \prime}=1$ ،
No. 2sí, 3.16"	$=1$ "	

Two Graduations.

Twelve Inches Long.

SPECIAL SCALES MADE TO ORDER.
Price, $6^{\prime \prime}$ Scales, $\$_{2} \mathbf{\infty}$; $12^{\prime \prime}$ Scales, $\$ 250$.

IIr．ostin

One Catiratin
IWin

No．321，1－2． 5.1
No．3른，1－tincil

I

Sct．	Jurim a：．，．＇	，
比訊	－	
\s，	\because	
E．	$\because 1$	
\．\％\％	－．	
K， Ez z	gr	
N，	${ }^{9}$	
S．\％\％	${ }^{4}$	
	wrime \cdot	

Tiestinarona

No．348，1z＂， 4 分江：

DRAUGHTSMEN'S PROTRACTOR.

About One-Half Size.

This Protractor can be quickly set to any angle. It can be used either side upand on either of the two straight edges and it is of advantage in dividing a circle, transferring angles or laying off a given angle, without resetting, on either side of a line.

The Vernier reads to five minutes.

It forms a convenient extension to a T square and frequently takes the place of 45° and 60° triangles.

TABLES FOR USE WITH DRAUGHTSMEN'S PROTRACTORS.

Table for Dividing Circles or Laying out Geometrical Figures.

No. of Sides.	Included Angle.	Anglex at Centre of Circles.	Angles for Sides of Yigures.
3	120°	300	$30{ }^{\circ}$
4	90°	45°	4.5°
5	72°	$18^{\circ}-54^{\circ}$	$36^{\circ}-720$
6	60°	30°	30°
8	45°	45°	$\underline{20} 30{ }^{\prime}$
10	36°	$54^{\circ}-18^{\circ}$	$18^{\circ}-54{ }^{\circ}$
12	30°	60°	$15^{\circ}-45^{\circ}$
14	$25^{\circ} 43 \prime$		$12^{\circ} 51^{\prime}-38^{\circ} 34^{\prime}$
		$12^{\circ} 51^{\prime}$	$64^{\circ} 11^{\prime}$
16	$22^{\circ} 30^{\prime}$	$67^{\circ} 30^{\prime}-4.5{ }^{\circ}$	$11^{\circ} 15^{\prime}-33^{\circ} 45^{\prime}$
18	20°	$\begin{aligned} & 70^{\circ}-50^{\circ}-30^{\circ} \\ & 10^{\circ} \end{aligned}$	$10^{\circ}-30^{\circ}-50^{\circ}$
20	18°	720-54\%	$9{ }^{\circ}-27^{\circ}-45^{\circ}$
24	15°	$75^{\circ}-60^{\circ}-45^{\circ}$	$\begin{aligned} 7 & 30^{\prime}-22^{\circ} 30^{\prime} \\ 37^{\circ} & 30^{\prime} \end{aligned}$

Tapers per Foot and Corresponding Angles.

Taper Per Ft,	$\begin{gathered} \text { Included } \\ \text { Angle. } \end{gathered}$	Angle with Centre Line.	Taper Per Ft.	$\begin{gathered} \text { Included } \\ \text { Angle. } \end{gathered}$	Angle with Centre Line.
$1-8^{\prime \prime}$	$0^{\circ}-36^{\prime}$	$0^{\circ}-18^{\prime}$	$1^{\prime \prime}$	$4^{\circ}-46^{\prime}$	$2^{\circ}-23^{\prime}$
$1-4^{\prime \prime}$	$1^{\circ}-12^{\prime}$	$0^{\circ}-36^{\prime}$	$11 / 2^{\prime \prime}$	$7^{\circ}-09^{\prime}$	$3^{\circ}-35^{\prime}$
$5-16^{\prime \prime}$	$1^{\circ}-30^{\prime}$	$0^{\circ}-45^{\prime}$	$13 / 4{ }^{\prime \prime}$	$8^{\circ}-20^{\circ}$	$40-10^{\prime}$
$3-8{ }^{\prime \prime}$	$10-47^{\prime}$	$0^{\circ}-54^{\prime}$	$2^{\prime \prime}$	$9^{\circ}-31{ }^{\prime}$	
$7-16^{\prime \prime}$	$2{ }^{-}-05^{\prime}$	$1^{\prime}-02^{\prime}$	$21 /{ }^{\prime \prime}$	119...	
$1-2^{\prime \prime}$	$2^{\circ}-23^{\prime}$	$1^{\circ}-12^{\prime}$	$3^{\prime \prime}$	5	
$3-4^{\prime \prime}$	$3^{\circ}-35^{\prime}$	$1^{\circ}-47^{\prime}$	31		
15-16 ${ }^{\prime \prime}$	$4^{\circ}-28^{\prime}$	$2^{\circ}-14^{\prime}$			

UNIVERSAL OR CENTRE SQUARESS.

\checkmark Vיण Mindilind

4" Blade, 1st cor. 32 nds , 2 d cor. 20 ths . $\mathrm{f}^{\prime \prime}, \mathrm{K}^{\prime \prime}, 10^{\prime \prime}, 12^{\prime \prime}{ }^{\prime \prime}$ lst cor. $16 \mathrm{th} \mathrm{h}, 2 \mathrm{~d}$ cor. 12 th .

Last inch, 1 st cor. 82 nds , 2 d cor. 48 the.

No.	Price.	Length of Blade.	Leagth of Head.
(50)	St (k)	4 "	8"
65:2	2 50)	6	
6.54	350	8	51.2
6:5\%	510	10	
6.5x	600	12	83.4

No.	Angles.	Length of Sides.	Width of Sides.	Price.
	$30^{\circ}, 60^{\circ}, 90^{\circ}$	$6^{\prime \prime}, 103.8^{\prime \prime}, 12^{\prime \prime}$	3-4"	\$400
, 542	$30^{\circ}, 60^{\circ}, 90^{\circ}$	$31-2^{\prime \prime}, 61-16^{\prime \prime}, 7^{\prime \prime}$	5-8	300
'544	$45^{\circ}, 45^{\circ}, 90^{\circ}$	$8^{\prime \prime}{ }^{\prime \prime} 8^{\prime \prime}, 11114^{\prime \prime}$	3.4	400
546	$45^{\circ}, 45^{\circ}, 90^{\circ}$	$5^{\prime \prime}, 5^{\prime \prime}, 71-16^{\prime \prime}$	5-8	300

CALIPER SQUARES.

 outside measurement..

 long, hardened ard

KEY SEAT RULES.

Parallel lines for key seats, mortises, etc., can be readily and accurately drawn with these rules on shafts not less than $7 . \mathrm{x}^{\prime \prime}$ In diameter.
The edge are beveled, and graduated to 32 ds of an inch.

HARDENED CAST STEEL TRY SQUARES.

413

IMPROVED HARDENED CAST STEEL TRY SQUARES.

This improvement in making large Try Squares consists in securing the blade to the beam by means of screws, whereby they are made more permanent and accurate and can be more readily and economically repaired.

The length of blade, as given, is from the inner edge of beam to end of blade.

The screws should be adjusted only at our works.
Substantial Wooden Cases furnished with these Squares.

Number.	Length cf Blade.	Length of Beam.	Price.
570	$24^{\prime \prime}$	$1331-8^{\prime \prime}$	23000
572	30	$161-4$	40000
574	36	19	$1-2$

GRADUATED STEEL SQUARES.

NOT HARDENED.

The length of blade, as given, is the extreme length over all.

Substantial Wooden Cases for protecting the Squares when not in use, furnished when desired, for the $9^{\prime \prime}$ and $12^{\prime \prime}$. For prices, see following list.

STEEL SQUARES FOR MILLWRIGHTS.

No. 620. Price, $\$ 10.00$

-

This Rquare is designed to meet the wants of those desiring n more nceurate tool than the ordinary carpenter's square.

> Long blade, $24^{\prime \prime}$ long, $2^{\prime \prime}$ wide. Short blade, $18^{\prime \prime}$ long, 1 I- $2^{\prime \prime}$ wide.

Both hades are $5.32^{\prime \prime}$ thick at the corner where they unite and taper down to $1-16^{\prime \prime}$ at their ends. (lne outside and inside corner divided to Eiths. Whe outslde and inside corner divided to l6the, (viepting $1^{\prime \prime}$ on end divided to 64ths and the nerond lnch from end divided to 82nds. Both siles have similar graduations.

THIN STEEL SQUARES.

[^11]
LATHE TEST INDICATOR.

The Lathe Test Indicator is new in design and is for use in setting centrally, any point or hole in a plece of work to be operated upon in a lathe or upon a face plate. It is alse well adapted for testing lathe centres, shafting, or other work held detween centres, the inside or outside of cylinders, pulleys, etc., and all work of a similar class.
,The sool 18 made of steel, and is of such a size as to be held conveniently in the tool post of a lathe. The bar, $15-16^{*}$ wide and $3-8^{*}$ thick, is drop forged and formed at the end to receive a Universal Joint for supporting the finger holder. The Universal Joint recommends itself by its simplicity of construction. A clamp nut is provided for clamping the joint when it is desired to have only a vertical movement to the finger, as in testing pieces held between centres, the inside or outside of pulleys, etc. The bushing, which holds the finger, is split, thus allowing the finger to be adjusted to lengths required, and clamped in position.
The har and all wearing parts are hardened.
The finger holder is furnished with two fingers, elther one of which can be quickly attached; one finger is ground tc an angle of 60° and the other is bent for Inside and outaide testing.

A spiral spring is provided for holding the finger against the work with an even pressure.
Each tool is neatly packed in a box fitted to receive the various parts.

＂B．\＆S．＂
 COMBINATION SQUARES． Nos．30，35， 40 and 53.

No 36， With Hardened Heads and Boft Blades．

No．$\frac{\underset{\sim}{x}}{\substack{n}}$	With Centre Head．	No．音	Witho＇t Centre Head．	No．	蔮	$\begin{aligned} & \text { With } \\ & \text { Centre } \\ & \text { Hrad. } \end{aligned}$	No．	芯	Centre Head．
		$40114^{\prime \prime}$	3125				53 H		100
$40136^{\prime \prime}$	8200	40 K 6	150	53 B		\＄175	53 K	6	125
40189	2 25	4009	175	53 C	9	200	53	，	150
40 1） 12	250	40 P 12	200	531	12	225	53	12	175
40 E 18	325	40 R 18	275	53 E	18	300	53 R	18	250
40 F 24	375	40.54	325	53 F	24	350	53 S	24	300

No．$\frac{\underset{\sim}{x}}{\substack{n}}$	With Centre Head．	No．音	Witho＇t Centre Head．	No．	蔮	$\begin{aligned} & \text { With } \\ & \text { Centre } \\ & \text { Hrad. } \end{aligned}$	No．	芯	Centre Head．
		$40114^{\prime \prime}$	3125				53 H		100
$40136^{\prime \prime}$	8200	40 K 6	150	53 B		\＄175	53 K	6	125
40189	2 25	4009	175	53 C	9	200	53	，	150
40 1） 12	250	40 P 12	200	531	12	225	53	12	175
40 E 18	325	40 R 18	275	53 E	18	300	53 R	18	250
40 F 24	375	40.54	325	53 F	24	350	53 S	24	300

No．30，
With Hardened Heads and Tempered Blades．

No． 40 ，
With Soft Heads and Tempered Blades．

Centre Head．	No．	－	
	3.511	4	1
825	35 K		175
250	350	9	200
275	3513	12	245
350	35 R	18	300
400	35 S		350

No．63，
With Soft Heads and Soft Blades．

The blades are divided into parts of inches，as follows：

			No． 4	No． 7
	No． 1 Grad．	No． 2 Grad．	Grad．	Grad．
1st corner，	10，20，50， 100	8	8	16
$2{ }^{2} 1$ corner，	12．24， 48	10，20，50， 100	16	82
9．d corner，	17，28	12， 24,48	32	64
h corner，	16，32， 64	16，32， 64	64	100

＂B．\＆ \mathbf{S}^{*}
 COMBINATION SQUARES
 Nos． 50 and 61 ．

No．50，
With Hardened Heads and
Tempered Blades．

No．	$\frac{\dot{y y}}{\frac{2}{2}}$	$\begin{aligned} & \text { Wirth } \\ & \text { Centre } \\ & \text { Head. } \end{aligned}$	5	$\frac{5}{2}$		5 m	$\frac{3}{2}$	$\begin{aligned} & \text { Srine } \\ & \text { Masire. } \end{aligned}$	匆		
$\begin{aligned} & 50 \mathrm{E} \\ & 50 \mathrm{~F} \end{aligned}$	18 24	$\begin{array}{\|rr\|}84 \\ 5 & 75\end{array}$	$\begin{aligned} & 30 R \\ & 50 \% \end{aligned}$	主復	$(3,20$	$\begin{aligned} & 50 \% \\ & 65 \% \end{aligned}$	D	$\begin{aligned} & 681 \\ & 4 \end{aligned}$	$\begin{aligned} & 6 x \\ & 0 x \end{aligned}$		$\begin{gathered} 8 \\ 54 \end{gathered}$

Scribers ．Wuc．cars

＂B．\＆S．＂

COMBINATION SQUARES．

Metric Measure．

No．M30，
 With Hardened Heads and Tempered Blades．

No．M35，
 With Hardened Heads and Soft Blades．

o．	Σ				No．	$\left\lvert\, \begin{gathered} \underset{2}{x} \\ \frac{2}{2} \\ \mathrm{~g} \end{gathered}\right.$		No．	$\left\lvert\, \begin{gathered} \stackrel{\Xi}{0} \\ \stackrel{y}{0} \\ \text { E } \\ \text { E } \end{gathered}\right.$	Catre Head．
			Na\％					M	10	
13013	15	2	M30K 15	200	M35	15	8225		15	
301	20	2	M1306， 20	225	M35C	20	250	M350	20	0
M301	30	3 m	M1301 31	250	M351）	30	275	M35 P	30	225
M	511	37	M1312 50	325	M35E	50	350	M35R	50	300
M30	（i）	4 S	M30 S（ $\mathrm{iNO}_{\mathbf{1}}$	37	M35 E	60	400	M35	60	3 n

No M40，
 With Soft Heads and Tempered Blades．

No．M83，
With Soft Heads and Soft Blades．

No．	范	With Cutr Head	No．	涪	$\begin{aligned} & \text { With- } \\ & \text { out } \\ & \text { Cutre } \\ & \text { He:rd } \end{aligned}$	No．		$\left\lvert\, \begin{aligned} & \text { With } \\ & \text { Cntre } \\ & \text { Head. } \end{aligned}\right.$	No．		With－ out Cutre Head．
			M40H	10	21.5				M53	10	110
M4013	15	8200	M 40 K	15	150	M53 ${ }^{\text {¢ }}$	15	\＄175	M53K	15	125
M40C	20	225	M400	20	175	M53C	20	200	M530	20	150
M401）	30	250	M40 P	30	200	M535	30	225	M53P	30	175
M40F	50	325	$M+0 \mathrm{R}$	50	275	M53E	50	300	M53R	50	250
M40F	（i）	375	M40	60）	325	M53F	60	350	M53 S	60	300

No．M50，
With Hardened Heads and Tempered Blades．

No．M61， With Soft Heads and Tempered Blades．

No．		With Cotre Head．	No．	$\frac{\Xi}{\frac{N}{\sqrt{2}}} \dot{\bar{E}}$	With nut Cutre Head．	No．	$\left\lvert\,\right.$	With Cntre Head．	No．	立	With－ out Cntre Head．
M50E	50	3475	M 50R	50	3300	M61E	50	\＄400	M61R	50	\＄2
M50F	60	550	M50 S	60	375	M61F	60	475	M61 S	60	350

The blades are furnished graduated as follows：1st and 3d corners to millimetres；2d and 4th corners to 1.2 millimetres．

"B. \& S." PROTRACTORS.

Nos. 20, 21 and 22.

These Protractors are madt witis the mathe dite ind illo"

 nicety and accurately graduated, betay supla. d..ald.1 ..

 Dlade, furnished either soft or kemperid, ir cian"..... 1 i. . ihe
 level, which is so important an adjusct to a han a, hhi. biad.
 included in the price of the wrol.

No. 20,
With Soft Blades.

No.	Size.	Price.
20 C	$9^{\prime \prime}$	-275
20 I	12	3 (n)

No. 21,
W^{\prime} ith Temperted sladeo

Av	-1..	1...
2J 1	: ${ }^{\prime \prime}$	-is (0)
\% 11	1%	$\therefore \%$

Price, Protractor Head with Level, is w.
No. 22.
With Tempered Bladto.

"B. \& S." PROTRACTORS.

Nos. 24, 25 and 26.

WITH REVERSIBLE EBADS.

These I'rotractors are the same in design as the Nos. 20 and 21 , excepting that the face of the head is wider and profects beyond each side of the blade. This is an important feature and adils greatly to the utility of the tool. Either side of the tool can le used in transferring angles, thus a wobling the necersity of re-retting. The heads are the same length as those for the Nos. 20 and 21 and are about $1^{\prime \prime}$ wide.

No. 24, With Soft Blades.

No. 26^{\prime}
With Tempered Blades.

Price, Protractor Head with Level, $\$ 250$.
No. 26,
With Tempered Blades.

-	No.	Size.	Price.
	26 E	$18{ }^{\prime \prime}$	\$5 50
	2 i F	24	625

These Protractors differ from No. 25 only in having extra heavy blades and heavy Reversible Heads about $\boldsymbol{y}^{\prime \prime}$ long and $1^{\prime \prime}$ thick.

Price, Heavy Protractor Head with Level, \$3 $\boldsymbol{\infty}$.
The blades are divided into parts of an inch, as follows:

1st corner,
2d cerner,
3d corner, 4th corner,

No. 1 Grad.
$10,20,50,100$
12, 24, 48
14, 28
15, 32, 64

lers of	No.	No. 7
No. 2 Grad.	Grad.	Grad.
	8	16
10, 20, 50, 100	16	32
12, 24, 48	32	64
16, 32, 64	64	100

"B. \& S." COMBINATION SETS. Nos. 80, 82, 84, 85 and 87.

No. 85 includes Combination Square with centre head, protractor head and level. Sq. heads hardened, blades tempered.

No. 80, With Soft Heads and Soft Blades.			No. 82, With Soft Heads and Tempered Bladen.			No. 85, With Sg. Heads Hardened and Tompered Blades		
No.	Size.	,	No.	Size.	Pric	No.	Nize.	Pric:
80 C	$9^{\prime \prime}$	\$400	82 C	$9^{\prime \prime}$	3425	85 C	$9^{\prime \prime}$	475
80 D	12	425	82 I)	12	451	$85 \mathrm{I})$	12	500
80 E	18	500	82 E	18	59	85 E	18	57.5
80 F	24	550	82 F	24	5%	85 F	94	(6) 25
No. 84, With Soft Heads and Tempered Bladea.								

No.	Size.	Price.	No.	Nize.	Price.
$84 \mathbf{E}$	$18^{\prime \prime}$	$\$ 650$	87		
$84 \mathbf{F}$	24	785	$188^{\prime \prime}$	87	25
$87 \mathbf{F}$	24	800			

Nos. 84 and 87 differ from Nos. 82 and 8.5 only in haring extra heary blades, the Square Heads the same as those on Combination Squares Nos. 50 and 61 and the Protractor Ileads $9^{\prime \prime}$ long and $1.2^{\prime \prime}$ thick.

The blades are divided into parts of an inch, as follows				
	No. 1 Grad.	No. 2 Grail.	Grad.	Grad.
1st corner,	10, 20, 50, 100	8	8	18
$2{ }^{2}$ corner,	12, 24, 48	10, 20, 50, 1(0)	16	32
3d corner,	14,28	12, 24, 4x	32	R
4th corner,	16, 32, 64	16, 32, 64	64	

"B. \& S." COMBINATION SETS. Nos. $90,92,94,95$ and 97.

These sets differ from Nos. 90, 82, 84, 85 and 87 only in havfing the lieversible l'rotractoi Ifead, described on page 420.

No. 90, With Soft Heads and Soft Blades.		No. 92 , With Soft Fieads and Tempered Biades.			No. 98 , With Sg. Heads Hardened and Tempered Blades.		
					N	ize	Pr
(1)	9		$\mathbf{y}^{\prime \prime}$	34	95 C		525
90 I)	124	42 1)	12	5	95 D	12	550
90 E	18.5	92 E	18	5	95 E	18	25
90 F	24 600	12 F	$\underline{.4}$		95	24	75
N O. 94, NO. 97 With Soft Heads and Tempered Blaces. With square Heads Hardened and Tempered Blades.							

No.	size	Price.	No.	Nize	Price. $\$ 775$ 850		
94 E	$18{ }^{\prime \prime}$	87 (6)	97 975	18 24			

Nos. 94 and 97 differ from Nos. 92 and 95 only in having extra heavy blades, the spluare heads like those on the Comlination Syuares Nos. 50 and 61, and the Protractor Head about $9^{\prime \prime}$ long and $1-2^{\prime \prime}$ thick.

No. 4 No. 7				
	No. 1 Gran.	No. 2 Grad.	Grad.	Grad.
1st corner,	10, 20, 50, 100		8	16
ad corner,	12, 24,48	10, 20, 50, 100	16	32
corner,	14, 28	12, 24, 48	32	64
4th corner,	16, 32, 64	16, 32, 64	64	100

423

＂B．\＆S．＂PROTRACTOPE．

METRIC MEASUPE，

No M20，No．M21，

 With Soft Blades．With Tempered Bhalen．What Termen Nidie：| No． | Size in cm． | Pri | No． | Sine fiv ens． | Ruier | Sin | | $\underline{+}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{\mathrm{M} 20 \mathrm{C}}$ | 20 | \＄2 75 | M21C | 2 | S | Bes | 2 | |
| M20D | 30 | 300 | M21D | 3 | $3 \pm$ | E20 | 6 | |

－WITH REVERSIBLE PMDRFACDIP \＃Exils
No．M24．
No Nas

With Soft Blades．

No．	Size iu cm．	Price．	se．	Sive in	Alise	Then：	
M24C	20	8325	Mas	\geq	Sxal	I2r	3
M24D	30	350	Mesd	新	\％	Per	＋

＂B．\＆S．＂CONETTH

METFMC MEASTHE，

No．M30． With Soft Heads anit Soft Blades．

No．	Size in cm．	Frise	皿的．	$\begin{aligned} & \text { Fivelise } \\ & \text { man } \end{aligned}$	th	Stis	
M80C	20	6t 00	Bue	2	ary	－	
M80D	30	42	B3es	3		meny	3
M80E	50	交包	B1－15	，	2－	Uers	3
M80F	60	\＄ 0^{0}	昰碞	36			－

With Boft Benle antilerpers
Hialm．

IMPROVED

UNIVERSAL BEVEL PROTRACTOR.

No. 495. Protractor with $6^{\prime \prime}$ blade, Price, $\$ 8 \infty$. In Morocco Case, $\$ 900$.
No. 496. Protractor with 12" blade, Price, $\$ 9 \infty$. In Morocco Case, \$10 50.
EXTRA BLADES. $\mathbf{6}^{\prime \prime}$, Price, \$0 75 ; 12", Price, $\$ \mathbf{1 5} 7$.
This l'rotractor is well adapted for all classes of work where angles are to be latid out or established. Its uses as a Protractor are practically unlimited; the cuts on opposite page explain themselves and show a few of its many applications.

One side of the stock is flat, thus permitting its being laid flat upon the paper or work.

The dial is accurately graduated in degrees the entire circle. It turns on a large central stud, which is hardened and ground and can be rigidly clamped by a thumb nut.

The line of graduations is below the surface, protecting them from wear.
The Vernier adds materially to the use of the Protractor in oltaining fine measurements. It reads to 5 minutes or 1.12 of a degree.

The blade is about $1.16^{\prime \prime}$ thick, can be moved back and forth its entire length and clamped independently of the dial, thus adapting this Protractor for work where others cannot be used.

APPLICATIOAS

OP T1E

IMPROVED UNIVERSAL BEVEL

 PROTRACTOR.

Special Circular on Application.

BEVEL PROTRACTORS.

IMPROVED UNIVERSAL BEVEL.

No. 483. Price, $\$ 150$.
The above cut represents an improved Universal Bevel, $3^{\prime \prime}$ long, with an offset blade that admits of the measírement of all angles.
The case is solid on the top for $11-2^{\prime \prime}$ from the square end.

UNIVERSAL BEVELS.

No. 20 SCREW PITCH GAUGE.

22 PITCHES,

Including Pipe Thread Pitches.

Full Size. Price $\$ \mathbf{\infty} \mathbf{\infty}$.
This Screw Pitch Gauge will measure the threads of nuts as well as of screws, and contains the pitches 9, 10, 11, 11 \%, $12,13,14,15,16,18,20$, on one end, and $22,24,26,27,28,30,32$, $34,36,38$ and 40 , on the other end.

The arrangement of blades hinged on each end of the case enables any desired number to be quickly placed in position for use.

We call attention to the following facts:
There are 22 pitches, including pipe thread pitches, 11x and 27 . The 8 pitch can be deternined by using the 16 pitce blade.

The 11 smaller pitches are on blades made narrower than the 11 larger ones, so that they have a wider range of use in measuring the threads of nuts than would be the case were they all of a size.

The gauge numbers are stamped on the outside of the frame, as well as on both sides of each blade, allowing the user to determine the position of a desired number at a glance.
 designed especially to meet the requirements of bicycle manufacturers, electricians and others using screws with fine \mathbf{V} threads.

The Gauge contains 22 blades with pitches $32,34,36,38,40$, $42,44,46,48,50$ and 52 on one end and $54,56,58,60,62,64,66$, $64,70,72$ and 74 on the wther.

SCREW PITCH GAUGE.

25 Pitches.

U. S. Standard Thread.

No. 766. Price, $\$ \mathrm{I} 50$.
This Screw Pitch Gange is the same in design as No. 22.
It contains 26 blades with pitches $21-4,23-8,21-2,25-3$, 2 3.4,2 7-s, 3, 3 1.4, 3 1.2, 4, 41.2 and 5 on one end, and 51.26 $6,7,8,9,10,11,12,13,14,16,18$ and 20 on the other. It also contains a blade with a gauge for grinding Thrend Tools.

CENTRE GAUGES

And Gauges for Grinding and Setting Screw Cutting Tools.

Full Size.

With Table for dertermining the size of Tap Drills for $60^{\circ} \mathrm{V}$ Threads.
U.S. Standard, 60°.

No. 510, Price 25 Cents. No. 611, Tempered, Price, 85 Centa Whitworth or English Standard, 55°.
No. 512, Price, 25 Cents. No. 518 , Tempered, Price, 35 Cents. Metrie, 60°.
No. 508, Price, 25 Cents. No. 509, Tempered, Price, 35 Cents
The angles used on thene gauges are 60 degrees for the U. S. Standard and Metric Gauges, and 55 degrees for the Whitworth or English standard. The four divisions 14, 20, 24 and 32 parts to the inch are useful in measuring the nam. ber of threads to the inch. The following parts to the inch can be determined by them, viz.: $2,3,4,5,6,7,8,10,12,14$, 16, 20, 24, 2x and 32 .

The metric guage is graduated to read to millimetres and nalf millimetres. When so graduated the table for determining the size of tap drills is omitted.
The table on the gatuge (see full size cut) is used for determining the size of tap drills for sharp $60^{\circ} \mathrm{V}$ threads, and shows in thousandths of an inch the double depth of thread of tap and screws of the pitches most cominonly used. This table is made up by dividing 1.732 , the double depth of thread of a screw that is one pitch, by the number of threads of the various pitches shown. For instance, the decimal .433, representing the double depth of thread of a screw that is four pitch, is olitained by dividing 1.732 by 4. In the same manner the double depth of thread of pitches not shown in the table may be readily obtained. The double depth of thread of a screw that is two pitch, for instance, is one-half of 1.732 .

As the double depth of thread represents the difference In the diameter of a tap and a tap drill, to obtain the diameter of a tap drill of any desired pitch it is only necessary to substract the decimal showing the double depth of thread of that pitch trom the diameter of the tap. For example, if the tap is four pitch, sharp V thread, and one inch diameter. subtract.433, the decimal showing the double depth of thread of this pitch in the table, from one, and the result, .567 of an inch, is the size of the tap drill, which would allow a sharp thread in the hole. * Allowance is to be made for the extent to which it is desired the threads should be flattened.
METHODS OF USING CENTRE GAUGE.

486

U. S. STANDARD SCREW THREADS.

Hameter of screw.	Threade per luch.	Dlameter at Root of Thread.	Fidth of Flat.
$3+3$			
14	20	. 185	. 0063
516	18	. 2403	. 0069
3 3.8	16	.2938	. 0078
7.16	14	. 3447	. 0089
1.2	18	. 4001	. 0098
9.16	12	. 4542	. 0104
5.4	11	. 5069	. 0114
3.4	10	. 6201	. 0125
7.8	9	.7307	. 0139
1	8	. 8376	. 0156
$11 . \mathrm{N}$	7	. 83514	.0179.
114	7	1.0644	. 0179
13.4	6	1.1585	. 0208
112	6	1.2835	. 0208
15.4	51.2	1.3888	.0227
13.4	5	1.4902	. 0250
17.8	5	1.6152	. 0250
2	41.2	t. 1.7113	. 0278
21.4	41.2	1.9613	.0278
21.	4	2.1752	. 0313
$23-\therefore$	4	2.4252	. 0313
3	31.2	2.6288	. 0357
31.4	31.2	2.8788	. 0357
312	$31-4$	3.1003	. 0385
3 3-4	3	3.3170	. 0417
4	3	3.5670	. 0417
41.4	27.8	3.7982	. 0435
41.2	¢ 3.4	4.02276	. 0455
43.4	25.8	4.2551	. 0476
5	21.2	4.4804	. 0500
$51-4$	21.2	4.7304	. 0500
519	$23-8$	4.9530	. 0528
53.4	$\bigcirc 3-8$	5.2030	.072 2
6	21.4	5.4226	. 055

No. 825
Free tres

 bott

Langer shul, th of

 to be cut.

This Gauge furnishes a correct standard to which tools can le ground to cut threads, of a uni-
after
0
S
S
S

29° SCREW THREAD TOOL GAUGE.

"ACTE ETAEDARD."

 standard io:
uniform ar. rio
standardi\%.
in use. $\mathrm{T}_{1: 又}$ - -a!
than the ar:.: •artu

now cenme? ahariod
A torl ace r ani..
price of arin <asup

AMERICAN STANDARD WIRE GAUGE.

ADOPTED BY THE BRASS MANUFACTURERS, JAN. 1858.

These Gauges are made from the best' steel, and are tempered, adjusted, and warranted accurate.

ON None genuine unless stamped as in the engraving with our trade marks.

No. 730 , sizes o to $\mathbf{3}^{6}$, . . . $\$ 250$
No. 732, sizes 5 to 36, • • . $2 \infty 0$
In order to familiarize the users of the gauge with the decimal equivalents of the gauge numbers, we furnish No. 732 with these decimal equivalents expressed in thousandths, stamped on the back, opposite to the regular gauge numbers.

ENGLISH STANDARS WIRE GAUGE.

THE SAME AS STUBS' WIRE, OR BIRTMIGHAT GADCE

No. 734, 1 to 36, 82 ∞.
ETO. 736, 6 to 26, Es 80.
Sizes of the Numbers of English Standarf Wire Camge.

WASHBURN \& MOEN STANDARD WIRE GAUGE.

This Gauge is $31-4^{\prime \prime}$ in diameter, and about $1-8^{\prime \prime}$ thick. It Is made from the best steel, tempered, adjusted, and all sizes tested after hardening.
The Gauge numbers, which run from 0 to 36 , are those of the Washburn \& Moen Standard Wire Gauge.

No. of Wire Gauge.	Size of each No. in Decimal Parts of an inch.	No. of Wire Gauge.	$\begin{gathered} \text { Size of each No. } \\ \text { in Decimal } \\ \text { Parts } \\ \text { of an inch. } \\ \hline \end{gathered}$	No. of Wire Gauge	Size of eachNo in Decimal Parts of an inch.
0000	. 3938	11	. 1205	24	. 02330
000	. 3625	12	. 1055	25	. 0204
00	. 3310	13	. 0915	26	. 0181
0	. 3065	14	. 0800	27	. 0173
1	. 2830	15	. 0720	28	. 0162
2	. 2625	16	. 0625	29	. 0150
3	. 2437	17	. 0540	30	. 0140
4	. 2253	18	. 0475	31	. 0132
5	. 2070	19	. 0410	32	. 0128
6	. 1920	20	. 0348	33	. 0118
7	. 1770	21	. 03175	34	. 0104
8	. 1620	22	. 0286	35	. 0095
9	. 1483	23	. 0258	36	. 0090
10	. 1350		のo		

IH：biz
No． 3 St
士たた す。

U. S. STANDARD GAUGE.

No. 740. Price, \$2 50.

This Gauge is $31-4^{\prime \prime}$ in diameter and about 1-8" thick. The Gauge numbers, which run from 0 to 36, are those of the U.S. Standard Gauge for Sheet and Plate Iron and Steel, adopted by Congress, March 3, 1893.

The Gauge is hardened and tempered, and all sizes are carefully tested after hardening.

WIRE GACGE ATI CEIIPRR.

 purposes in
 sizes of stork.

WIRE GAUGE AND CALJ\&\&;

U. S. STANDARD.

 U.S. Standard Sheet and I'late Irofi now masml, whopturl liy Congress, March 8rd, 188.

ROLLING MILL GADGES.

English or Birmingham Standard.

No. 744, sizes 000 to 25 , $\$ 250$ No. 746, " 1 to 82, $\$ 300$

These gauges are shown about one-third size in cut. They are made of steel, hardene.l and tempered. They are about 3 -16ths of an inch thick and are well adapted to the rough usage they are likely to have in rolling mills or in ether places where many measurements are to be quickly taken.

ROLLING MILL GAUGE.

0. S. Standard Gauge for Sheet and Plate Iron and Steel.

Adopted by Congress, March 3, 1898.

No. 747, Sizes 000 to 25. Price, $\$ 250$.

SIZES OF NUMBERS

OF THE U. S. STANDARD GAUGE

For Sheet and Plate Iron and Steel.

An Act Establishing a Standard Gauge for Sheet and Plate Iron and Steel.

Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled:
That for the purpose of securing uniformity the following is established as the only gauge for sheet and plate iron and stecl in the United States of America, namely:

Numbea of Galuge.	Approximate Thickness in an Inch.	Approximate Thickness in Decimal Parts of an Iuch.	Weight per Square foot in Ounces Avoirdupois. a voirdupois	Weight per Square Fnot in Pounds Avoirdupois.
0000000	1-2	-5	320	20.00
000000	15-32	. 46875	300	18.75
00000	7-16	. 4375	280	17.50
0000	13-32	. 40625	260	16.25
000	3-8	. 375	240	15.
00	11-32	. 34375	220	13.75
0	5-16	. 3125	200	12.50
- 1	9-32	. 28125	180	11.25
2	17-64	. 265625	170	10.625
3	1-4	. 25	160	10.
4	15-64	. 234375	150	9.375
5	7-32	. 21875	140	8.75
6	13-64	. 203125	130	8.125
7	3-16	. 1875	120	7.5
8	11-64	. 171875	110	6.875
9	5-32	. 15625	100	6.25
10	9-64	. 140625	90	5.625
11	1-8	. 125	80	5.
12	7-64	. 109375	70	4.375
13	8-32	. 09375	60	3.75
14	5-64	. 078125	50	3.125
15	9-128	. 0703125	45	2.8125

$\begin{aligned} & \text { Xumber } \\ & \text { cifuse. } \end{aligned}$	Appruximate Thickness in Yractiona of en fach	Approzimate Thletereas is Dectimal Parte of an lach.	Treigin Por Square Feot 	Freight Per 8quare Fow in Pouph Aveind upia
16	1-16	.062;	40	2.5
17	9-160	. 05525	36	2.25
18	$1-20$. 05	32	2.
10	7-160	.04375	28	1.75
21	8-80	. 0375	24	1.50
21	11-320	.034375	22	1.375
22	1-32	.0:3125	20	1.25
23	9-320	. 028125	18	1.125
21	$1-40$. 025	16	1.
25	7-320	. 021875	14	. 875
213	3-160	. 01875	12	. 75
27	11-640	. 0171875	11	. 6875
$2 \times$	1-64	. 015625	10	.62.)
$2!)$	91010	. 0140625	9	. 5625
$31)$	1-80	. 0125	8	. 5
31	7-640	.0109375	7	. 4375
82	13-1280	. 01015625	6 1-2	. 40625
138	3-32	.00!1375	6	. 375
84	11-1280	. 00850375	5 1-2	. 34375
3.5	6-640	. 0078125	5	. 3125
36	0-1280	. 00703125	4 1-2	. 2×125
37	17-2560	. 006640625	4 1-4	. 265625
34	1-160	. 00625	4	. 25

And on and after July first, elghteen hundred and ninety. three, the wame and no other shall be used in determining dulles and taxes levied by the United States of America on whoct and plate iron and steel. But this act shall not be construed to increase duties upon any articles which may be imported.
sec. 3. That in the practical use and application of the standard gauge hereby established a rariation of two and one-half per cent. either way may be allowed.

$$
\text { AF } \quad \text { Trch 3, lsus. }
$$

POCKET SCREW AND WIRE GAUGE.
 No. 760. Price, \$2 50.

Cut今 One-half Size.

This gauge as shown is an angular gauge graduated on the front, on the left of slot, to show all sizes of the American standard screw gauge from 0 to 30 , and is designed for the measurement of wire as well as of machine and wood screws.

A screw or wire is measured by passing it into the angular opening till it touches on both sides; the division at the point of contact indicates the number of the gauge stamped on the side of the slot.

In addition to the gauge numbers, the front side of the gauge is also graduated on the left of slot to $32 n d s$ of an inch.

The back side of gauge is graduated as the old or English wire gauge, from 17 to 0000 on the right, and the new or American wire gatuge from 15 to 0000 on the left of slot.

By reason of its weight and size and the fact that the ends are closed, it is especially well adapted to be carried in the pocket.

LARGE SCREW AND WIRE GAUGI.

No. 762.	Price, $\mathbf{\$ 3} 50$.
No. 764.	Extra Thick, $\$ 450$.

Cuta one-third stze.

This gange, as shown in cut, is graduated on both sides of slot to show all sizes of the American standard serew gauge from 0 to 30, and is designed for the measurement of wire as well as of machine and wood screws.

A screw or wire is measured by passing it into the angular opening till it touches on both sides; the division at the point of contact indicates the number of the gauge stamped on the side of the slot.

The front of the gauge is also graduated on both edges to 8ths of an inch. An angle cut in the side allows the head of the screw to le placed against a positive stop when measuring the length.

The back of the gauge is graduated at the old or English wire gauge from 17 to 0000, on the right, and to 32 nds of an inch on the left of flot. The outer left hand edge is graduated to 32 nds of nn inch.

The larger size makes coarser graduations on the sides of the slot possible, and it is thus more easily read and is best adapted for use when it is to be kept as a tool of reference.
The gange is also made about $5-32$ " thick, and is known as "Extra Thick."

TABLE OF DECIMAL EQUIVALENTS
 OF SCREW GAUGE

FOR MACHINE AND WOOD SCREWS.

The difference between consecutive sizes is $.01316^{\prime \prime}$.

- No. of	$\begin{aligned} & \text { Size of } \\ & \text { Number } \\ & \text { in } \\ & \text { Deciunals. } \end{aligned}$	No. of Gauge.	Size of Number in Decimals	$\begin{aligned} & \text { No. of } \\ & \text { Screw } \\ & \text { Gauge. } \end{aligned}$	Size of Number in Decimale.
000	.03152	16	. 26340	34	. 50528
00	. 04468	17	. 28156	35	. 51844
0	. 05784	18	. 29472	36	. 33160
1	.07100	19	.30788	37	. 54476
2	. 08416	20	. 32104	38	.53)92
3	. 19738	21	. 33420	39	.57108
4	. 11048	22	. 34736	40	. 58424
5	. 12364	23	. 36052	41	-59740
6	. 13680	24	. 37368	42	. 61056
7	. 14996	25	. 38684	43	. 62372
s	.16312	26	. 40000	44	. 63688
9	.17628	97	. 41316	45	.65004
10	. 18944	25	. 42632	46	. 66320
11	. 20260	29	. 43948	47	.67686
12	. 21576	30	. 45264	48	. 68952
13	. 22892	31	. 46580	49	. 70268
14	. 24208	32	.47896	50	. 71584
1.5	.255. 24	33	.49212		

TABLE OF DECIMAL EQUIVALENTS OF STUBS' STEEL WIRE GAUGE.

Lether.	Slie of Letter in iberimalo.	Nn. of uiro diacure	size of Number In Deeimals.	No. of Wire Gauge	Size of Number in Decimals.	No. of Wire Gauge.	Size of Number in Decimale
7	. 413	1	.22\%	2N	. 139	55	. 050
Y	. 414	2	. 218	29	. 134	56	. 04.5
X	.3:17	8	. 212	30	.127	57	. 442
W	.34)	4	$.20{ }^{\circ}$	31	. 120	58	. 41
V	.3\%	5	. 214	82	. 115	59	. 040
I	. 3 M	6	.201	83	.11:	60	. 039
'T	.3.2\%	7	.19\%	34	. 110	61	. 038
\checkmark	.36	H	.19\%	3.5	.10N	62	. $037{ }^{\circ}$
18	. $3 \mathrm{3}: 1$	9	. 194	88	.106	63	. 036
4	.31!	10	. 191	87	. 103	64	. 035
1	. $3: 3$	11	.108	3*	. 101	65	. 033
0	. 3111	12	.185	83	(0, M)	66	. 032
N	. 3 r2	13	.182	40	. 0397	67	. 031
N	$\therefore 5$	14	.1*)	41	.010)	68	. 030
I,	$\therefore 1.1$	1:	.17\%	42	. 0 : 2	69	. 289
K	$\therefore 1$	16	.175	$4: 3$. $0 \times \sim$	71	. 027
J	$\therefore \%$	17	.172	44	.085	71	. 0226
1	$\therefore{ }^{\prime}$	18	. 168	4.5	. 0×1	72	. 024
11	\therefore if	$1!$. 164	43	.07!	73	. 023
(1)	$\therefore 1$	30	. 161	47	. 077	74	. 022
F	$\therefore \%$	21	.1.7	4N	.075	75	. 020
F	.23)	$\because 2$.155	49	. 072	76	. 018
1)	$\therefore 4 ;$	23	.153	50	.069	76	. 016
($\therefore 12$	24	. 1.1	51	. 066	78	. 015
13	23	2.	.14N	52	. 063	79	. 014
A	ㄹ.4	26	. 146	53	. 055	80	. 013
	1	27	. 143	54	. 055		

STUBS' GAUGES.

In using the gauges known as Stubs' Gauges, there should be constantly horne in mind the difference between the Stubs' Iron Wire Gatuge and the Stubs' Steel Wire Gauge.
The Stuls' Iron Wire Gauge is the one commonly known as the English Standard Wire, or Birmingham Gauge, and designates the Stuls's soft wire sizes.

The Stuly' Steel Wire Gauge is the one that is used in measuring drawn steel wire or drill rods of Stubs' make and is also used by many makers of American drill rods.

twist drill and steki wire gajars.

DECIMAL EQUIVALENTS

OF THE
Numbers of Twist Drill and Steel Wire Gauge.

No.	Slze or No. in Decimals.	No.	Size of No. in Decimals.	No.	Size of No. in Decimals.	No.	Sixe of No. in Decimals
1	.2280	21	. 1590	41	. 0960	61	0.390
2	.2210	22	. 1570	42	. 0985	62	. 0380
3	. 2130	23	. 1540	43	. 0890	63	. 0370
4	. 2090	24	. 1520	44	. 0860	64	. 0360
5	.2055	25	. 1495	45	. 0820	65	. 03550
6	. 2040	26	. 1470	46	. 0810	66	. 0330
7	.2010	27	. 1440	47	.0785	67	. 03220
8	. 1980	28	. 1405	48	.0760	68	. 0310
9	. 1960	29	. 1360	49	.0730	69	. 02925
10	. 1935	30	. 1285	50	.0700	70	. 0280
11	. 1910	31	. 1200	51	. 0678	71	. 0260
12	. 1890	32	. 1160	52	. 06635	72	. 0250
13	. 1850	33	. 1130	53	.0595	73	. 0240
14	. 1820	34	. 1110	54	. 0550	74	. 0225
15	. 1800	35	. 1100	55	. 0520	75	. 0210
16	.1770	36	. 1065	56	. 0465	76	. 0200
17	. 1730	37	. 1040	57	. 0430	77	. 0180
18	. 1695	38	. 1015	58	.0420	78	.0160
19	. 1660	89	. 0995	59	. 0410	79	. 0145
20	. 1610	40	. 0980	60	. 0400	80	. 0135

JOBBERS' DRILL GAUGE.

For Gauging Twist Drills.

SIZES OF TAP DRILLS

FOR U. S. STANDARD THREADS.

By the formulas given below, the results, strictly speak. ing, are the diameters of the lottoms of the threads. The tap drill in, in common practice, the one that is one or two gauge numbers larger, for the smaller, or numbered sizes, and one that is about $.500^{\prime \prime}$ larger for the larger sizes. The amount allowed for clearance varies in different shops and on different classes of work.

Size of Tap Drill for U. S. Standard Thread = outside diameter of Screw - $\frac{1.299}{\text { Threads to the inch. }}$

Size of Tap Drill for 3-4" Screw, U. S. Standard Thread, 10 threads to the inch $=.750-\frac{1.299}{10}=.750-.1299=.6201$, size of Tap Drill.

Diameter or Screw	$\begin{gathered} \text { Threads } \\ \text { per } \\ \text { Inch. } \end{gathered}$	Size of Tap Drill.	$\begin{aligned} & \text { Diameter } \\ & \text { of } \\ & \text { Screw. } \end{aligned}$	$\begin{gathered} \text { Threads } \\ \text { par } \\ \text { Inch. } \end{gathered}$	Size of Tap Drill.
1-4"	20	. 185	2	41.2	1.712
5-16	18	. 240	21.4	41.2	1.962
3-8	16	. 294	21.2	4	2.176
7-16	14	. 344	23.4	4	2.426
1.2	13	. 400	3	31.2	2.629
9.16	12	. 454	31.4	312	2.879
5.8	11	. 507	'31.2	83.4	3.100
3-4	10	. 620	33.4	3	3.317
7.8	9	. 731	4	3	3.567
1	8	. 837	41.4	27.8	3.798
11.8	7	. 940	41.2	23.4	4.028
11.4	7	1.065	43.4	25.8	4.256
13.8	6	1.160	5	21.2	4.480
11.2	6	1.2×4	51.4	$21-2$	4.730
15.8	51.2	1.389	51.2	23.8	4.953
13.4	5	1.491	53.4	23.8	5.203
17.8	5	1.616	6	21.4	5.423

SIZES OF TAP DRILLS FOR V THREADS.

Size of Tap Drill for \mathbf{V} Thread $=$ outside diameter of Screw - $\frac{1.732}{\text { Threads to the inch. }}$

Size of Tap Drill for 3.4" V Thread, 10 threads to the inch = $.750-\frac{1.732}{10}=.750-.1732=.5768$, size of Tap Drill.

462

GAS HEATER.

No. 726. Price, 75 Cents.

For Tempering Drills, Punches, Chisels, Small Tools, Etc.

This heater, in many instances, takes the place of a forge in tempering machinists' small tools, and is more conven. lent and economical in time and fuel. It is provided with a collar with holes corresponding to those in the lower part of the tube. By this arrangement the supply of air can be regulated, and the Intensity of the flame controlled.

DIRECTIONS.

In all cases the collar shpuld, before lightling, be turned to nearly close the holes in order to prevent the passage of alr into the burner. It should then be turned back, admitting the alr until the blue fame appears.

If the gas pressure is low, or a strong draught causes the tame to burn at the bottom instead of at the mouth of the tube, the collar should be adjusted so as to partially shut off the supply of air.

For ordinary work sufficient gas should be used to prevent the flame from descending into the tube, and for larger pleces the flame should be nearly 8 inches wide.

Ordinary articles should be held in the upper part of the flame above the central blue portion and parallel with it. The larger the plece the farther it should extend into the fame.

The heater should be located in a dark place, and a sup. port provided for greater convenience in heating the heavier articles. The upper ends of the curved side pleces ahould not be more than one-quarter of an inch apart.

The difflculties experienced in using Wire Gauges of the usual forms are well set forth in the following circular issued by MESSRS. MILLER, METCALF \& PARKIN, Steel . Manufacturers, of Pittsburgh, Pa.

MEMORANDUM ON GAUGES.

Referring to the annexed tables, we would call attention to some of the absurdities and anomalies of the present system of gauges, denoted by numbers.
A perusal of these tables should satisfy us that we have a sutficient variety to choose from and ample refinement, when we get down to one-millionth of an inch, which is the final figure in some cases.

In some cases the difference between two numbers falls as low as two one-thousandths of an inch, in others it is only one one-thousandth, \&c.
It may be possible to make one gauge to any of these standards, which shall be so accurate as to defy the detection of an error and with the same care it may be possible to make a thousand such gauges, but every mechanic and every person accustomed to making accurate measurements of the best work, knows that it is simply impossible to obtain absolute accuracy in such pieces of work, when produced in large quantities.
It is impossible commercially, on account of the cost and that settles the question.
Every one knows of the wonderful accuracy of the Whitworth gauges and also their enormous price, which makes them almost unsalable.

In regard to ordinary wire gauges, they are notoriously inaccurate, vecause they cannot be made accurate and be at all salable.

We have two new gauges in our possession, which were kept in our offices for purposes of comparison and to prevent their wearing they were not allowed to go into the mills.
In a recent case, a sample under discussion, measured on one gauge, tight twenty-three, and on the other, light twenty-four and our customer said it was neither, by his gauge and did not suit him, any how.

One of our new gauges has its No. 23 so much larger than its No. 22, that the difference can be easily detected by the naked eye; yet No. 23 ought to be two to four thousandths smaller than No. 22.

If we were to roll No. 23 by that gauge, how would our customer get what he wanted, unless his gauge accidentally contained the same blunder? Yet our gauge is a new one stamped with the maker's name, and cost about six dollp-

WEIGHT OF IRON AND STEEL SHEETS.

Weight Per Square Foot.-Kent.

Thickness by Birmingham Gauge.				Thickness by American (Brown \& Sharpe's) Gange.			
No. of Gauge.	Thickness in Inches.	Iron.	Steel.	No. of Gauge.	Thickness in Inches.	Iron.	Steel.
0000	. 454	18.16	18.52	0000	. 46	18.40	18.77
000	. 425	17.00	17.34	000	. 4096	16.38	16.71
00	. 38	15.20	15.30	00	. 3648	14.59	14.88
0	. 34	13.60	13.87	0	. 3249	13.00	13.26
1	. 3	12.00	12.24	1	. 2893	11.57	11.80
2	. 284	11.36	11.59	2	. 2576	10.30	10.51
3	. 259	10.36	10.57	3	.2294	9.18	9.36
4	. 238	9.52	9.71	4	. 2043	8.17	8.34
5	. 22	8.80	8.98	5	. 1819	7.28	7.42
6	. 203	8.12	8.28	6	. 1620	6.48	661
7	. 18	7.20	7.34	7	. 1443	5.77	5.89
8	. 165	6.60	6.73	8	. 1285	5.14	5.24
9	. 148	5.92	604	9	. 1144	4.58	4.67
10	. 134	5.36	5.47	10	. 1019	4.08	4.16
11	. 12	4.80	4.90	11	. 09097	3.63	3.70
12	. 109	4.36	4.45	12	. 0808	3.23	3.30
13	. 095	3.80	3.88	13	.0720	2.88	2.94
14	. 083	3.32	3.39	14	. 0641	2.56	2.62
15	.072	2.88	2.94	1.5	. 0571	2.28	2.33
16	. 065	2.60	2.65	16	. 0508	2.03	2.07
17	. 058	2.32	2.37	17	. 0453	1.81	1.85
18	. 049	1.96	2.00	18	. 0403	1.61	1.64 .
19	. 042	1.68	1.71	19	.0359	1.44	1.46
20	. 05	1.40	1.43	20	.0320	1.28	1.31
21	. 032	128	1.31	21	. 02×5	1.14	1.16
22	. 0228	1.12	1.14	22	. 0.2 .3	1.01	1.03
23	. 025	1.00	1.02	23	. $0 \geq 29$. 904	. 922
24	. 022	. 88	. 898	24	.(1)21	. 804	. 820
25	. 02	. 80	. 816	2.5	. 0179	. 716	.730
26	. 018	. 72	. 734	29	. 0159	. 636	. 649
27	. 016	. 64	. 653	27	. 0142	. 568	. 579
28	. 014	. 56	. 571	28	. 0126	. 504	. 514
29	. 013	. 52	. 530	29	. 0113	. 452	. 461
30	. 012	. 48	.490	30	. 0100	. 400	. 408
31	. 01	. 40	. 408	31	.0089	. 356	. 363
32	.(0)9	. 36	. 367	32	.0080	. $3: 0$. 326
33	. 008	. 32	. 326	33	.0071	. 284	. 290
34	. 007	. 28	. 286	34	. 0063	.252	.257
35	. 005	. 20	. 204	3.$)$. 005%	.2 .24	.228
As there are many gauges in use differing from each other and even the thicknesses of a certain specified gauge, as the Birmingham, are not assumed state the weight per square foot or the thickness in thousandths 8							

TBLEGRAPHIC CODE.

TELSGRAPALC ADDRESS, " SEARPE, PROVIDEICEE."

Thls Corle was adopterl for the use and conventence of our correnpondents. We have in addition coples of the "A, B, C, Telegraphle Conle," "Lieber's Conle," and "Western Union Telegraphic Ciole and cable Directory."

How many?
At monta an poselbice
What th the price of?
Send hoor plan of
Tbit price linclude overheal woinanil every: thlug nhown in cut, boxed and delivered f. o. b. Providence, K. I., and it net cash.

Should you order, please arrange for payment with -ome banher in New fork or enclose whit draft with your order
Has there been any change in the price of?
Fixtra expense will be
Total amount
What will te the weight of?
How soon can you nhli?
Can you furnish betore
We cannot furnish
Replaced by new design
We would recommend.
If so we enter order
liave rou shipped?
We will shlp
We hope to ahlp about
We can ship limmediately
We hope to ship
We can ship - days after recelpt of order
Shall wo shlp?
How soon can you ship, and what is the price ©?
If ordered at once we can ship
Order recelved, cannot ship until about .
We can ship
We cannot ship until funds are received
Wheu did you ship?
May we ship by Apprach
Ship by cxpress Apron.
Ship by fast freight
We will ship immediately Apthong,
Send tracer for
Send by mall
Bend by parcel post.
By what line have you shipped?
Shipped as per your instructions
Shipped by steamer New York

Aquiline.
Aradian.
Aracca.
Armour.
Abnegate. Almiration.
Affray.
Afix.

After.

Agate.
A pile.
Alpheus.
A literman.
Aluminum.
Antilles.
Antler.
Anxious.
Anxiety.
Aonian.
Aorist.
Aortales.
A pace.
A patels.
A pend.
A pante.
A pathy.
Apepsy.
A perture.
A petalons.
Apevopi.
A pex.
A phanite.
Appraise.
A pproach.
A psolt.

A thens.
Athesis.

Shipped by steamer leaving Boston
Will ship by steamer leaving New York.
Will ship by steamer leaving Boston
We have written you on the subject
We are shipping to day -
We shipped yesterday
How shall we ship?
Ship by A merican Line
Ship by Hamburg-American Line via New York
Ship by Allan Line via Boston
Ship by Allan State Line via New York.
Ship by Cunard Line via New York
Ship by Cunard Line via Boston
Ship by Anchor Line
Ship by Wilson Line via New York
Ship by Wilson Line via Boston.
Ship by Warren Line
Ship by White Star Line
Ship by Red Star Line
Ship by Leyland Line via New York
Ship by Leyland Line via Boston
Ship by North German Lloyd
Ship by North German Lloyd to Genoa
Ship by North German Lloyd to Naples
Ship by Compagnie Generale Transatlantique
Ship by Scandanarian Am.Line to Copenhagen
Ship by Scandanarian Am. Line to Gothenburg
Ship by Scandanavian Am. Line to Stockholm
Ship to the care of
Delivery f.o.b. Providence
Delivery f.o. b. New York
Delivery f. o. b. Boston
To be delivered not later than
To be called for in New York
According to instructions
Wesoldbefore your instructionswere received
Do you wishany-stock small and demand good
Others reserved no longer
We have not in stock the machine you order, but will send it
We have not in stock the machine you order, but can send it
We have not in stock the machine you order, but can ship immediately
We have not in stock the machine you ask for but can ship
Marline damaged between our works and steamer. Will sendanotber to replace by steamer sailing - .
Shall we do so?
Please reply to our letter of - concerning
Acknowledge receipt of letter (telegram or cable) by telegraph or cable .
When can you fill our order of -?
Please refer to letter of
Order received

Atilla.
Atinia.
Atlín.
Aunt.
Auportes.
Aupusely.
Auracestu.
Aurade.
A uralet.
Aurich.
Aurora.
Austrian.
Austunt.
Aversion.
A voset.
A vult.
Awake.
Barbarity.
Boom.
Border.
Boswain.
Burgundy.
Burnos.
Burletta.
Carpet.
Carpial.
Carpusty.
Carrara.
Carroll.
Cartoon.
Charm.
Chlorate.
Clan.
Clausel.
Compare.
Consider.
Convex.
Convoke.
Creed.
Croix.
Drug.
Easter.

Egeria. Egotist. Elect.

Electuse. Eleph: SN^{F}

Order executed as per instructions
Hold subjeet to our order
Have orler for-A wait letter lefore shpping Add wour order
Send what you can of our order at once; let balance follow tas soun as possible
We are dolng all we can to hurry your order, hope to mend it
Will therete any flue for delay? If so, how much?
Do nothing until you hear from ut
Do nothing further in the mater
Has letter been recelved?
Your letter has not been recelved
Your letter has been received and contents are natisfactory
Watifor ourletleribeforetakingdefiniteaction
Walling for your instructions
Make Pent mettlement possible and we will atand lose
Enter our order for the following machine(s) -, and hold it (them) sulject to our Inveructions
Do you want:
Cannot hold longer except for definite order.
If wated you must order at once
None on hamd
None on hand or in process of manufacture:
None on hand, and no more will be made.
We glve you telegraphic refusal subject to your replying within forty-eight hours
Can we do anything for you?
Answer by cable or telegram
Send particulars by mail
You will recetve letter of instructions . . .
Letter received; will act on your instructions
Cannot comply
Decline to have anything to do with the matter
The best we can do
What will be satisfactory?
We do not know what you mean
Placed the amount to your credit with
Your bankers state they have received no instructions from you to pay our bill
Balance to your credit is
Has been received
Shall we attend to insurance?
Insure for amount of in voice
Need not insure
Send sample of work which machine is to make
Have sent sample of work which machine is to make
Waiting for sample
Samples not recelved........... : .
We will reserve you for 10 days
We will reserve you for 20 days

Florence.
Fork.
Formet. Frock.

Garlic.
Garrison. -
General.
Gillead.
Gilpin.
Gimlet.
Giraffe.
Gird.
Gizzard.
Grant.
Grape.

Gratiant.
Gratidia.
Grattant.
Grayling.
Grass.
Grassmere
Greaves.
Guide.
Lagoda.
Polish.
Primer.
Produce.
Prolix.
Pulley.
Pulsation.
Pupil.
Purple.
Push.
Putnam.
Puxton.
Quaint.
Queerest.
Queen:
Quibble.
Rabid.
Rasp.
Rate.
Ramee.
Ramose.

- Ranch.
- Random.

Send latest catalogue
Send supply latest edition General Catalogue Send supply latest edition Machinist Tool Catalogue
Apply to our agents Messrs. Buck \& Hickman, Ltd., 2 \& 4 Whitechapel Road, London, E., Eingland.
Apply to our agents, Messes. Chas. Churchili \& Co., Ltd., 9 to 15 Leonard St., Finsbury, London, E. C., England
Apply to our agenta, Messrs. Buck and IIickman, Ltd., 2\& 4 Whitechapel Road, London, E., England, or to Méssrs. Chas. Churchill \& Co., Ltd., 9 to 15 Leonard St., Finsbury, London, E. C., England
Apply to our agents, Messrs. Fenwick Freres \& Co., 21 Rue Martel, Paris, France
Apply to our agent, Otto Diechmann, Berlin, N. W. 7, Friederichstrasse, 138

Apply to our agents for small tools, Messrs. Schuchardt \& Schuctte, Spandauerstr. 59 to 61, Berlin, C.
Apply to our agent, v. Loewener, Copenhagen, K.
Apply to our agents, J. Block Co., Moscow and St. Petersburg, Russia .
Apply to our agent, F. W. Horne, foC, Yokohama

Run.
Rainbow
Rayport.
Rakem.

Road.

Rush.
Sail.
Saint.

Sap.
Sardls.
Saydow.
Savoy.

MACHINES.

UNIVERSAL MILLING MACHINES.

No. 1 without Tools	Adents.
No. 1 with 'rools	Adeona.
No. $11-2$ without Tools	Ader.
No. 11.2 with Tools	
No. 2 with Hand Vertical Feed, without	
Tools i - ${ }^{\text {a }}$ - \cdot -	Adolph.
No. 2 with Hancl Vertical Feen, with Tools	
No. 2 with Power Vertical Feed, without	
No. 2 with Power Vertical Feed, with Tools	Albertuts.
No. 2A with Hand Vertical Feed, without	
Tools	
No. 2A with Hand Vertical Feed, with Tools	Alcesti
No. 2A with Power Vertical Feed, without	
No. Tools with Power Vertical Feed, with 'iools	Alcuine. Aldusty.
No. 3 without Tools	Alcon.
No. 3 with Tools	
No. 4 without Tools	A melot.
No. 4 with Tools	

ATTACHMENTS FOR MILLING MACEINES.

Taper Mllling Attachment for Nos. 1 and $11: 2$ Culv. Mill. Mchs.
Taper Milling Attachment for Nos. 2 and $2 A^{\circ}$ lulv. Min. Mch.

Amarl.
Hand Nililng Athehment for No. o Plain

Amey.

No. 11 : $\quad . \quad$. Arles.
No. 12 . . Arlington.
Higli xined Milling Attachments.
No. 10 Armagh.
No. 11 Armenia.
No. 12 . . . Armenust.
Vertical spindle Milling Attachments.
No. 9, for No. 0 Plaín Mill. Mch.
No. 10, for Nos. 1, $11-2,2$ and 2A Univ., Nos. 1, 13, 2 and $2 B$ Plain Mill. Mehs.
No. 11 , for No. 3 Univ. or No. 3 Plain Mill. Mchs.

Artigas.
Asaph.
Aser.
No. 12 for No. 4 Univ. or No. 4 Plain Astin.
No. 12 A , for No. 24 Plain Mill. Mchs. : Astoria.
No. 13, for No. 5 Plain Mill. Mch. . . Atri.
Unl versal Milling Attachment.
No. 1., for No. 4 Univ. and No. 4 Plain . Ayrshire.
Slotting Attachments.
No. 9, for No. 0 Plain Mill. Mch.
No. 10 , for Nos. 1, 11-2, 2 and 2 A Univ., Nos. 1, 13, 2 and 213 Plain Mill. Mchs.
No. 11, for No. 3 Univ., No. 3 Plain Mill.
No. Mehs. for No. 4 Úniv., No. 4 Plain Mill.
Axiust.
Axooms. Mchs.
No. 12 A , for $\dot{\text { No. }} 24$ Plain Mill. Machine Circular Milling Attachment, $18^{\prime \prime}$, with Hand Feed

A xopum.
A xopumles.
Axuront.
Ayala.
Circular Miling Attachiment, $18^{\prime \prime}$, with
Power Feed. . .
Circular Milling and Dividing Attach., $10^{\prime \prime}$.
Cam Cutting Attachment.
No. 10, for Nos. 1, $11-2$ and 2 Univ., Nos. 1 and 2 Plain Mill. Mchs. . . Ayamonte.
Scale and Vernier for Univ. Mili. Mchs. : Ayton.

INDEX CENTRES.

$121 \cdot 2$ inch Universal, without Table . . A zaran.

$3-4$ inch Index Centres Azaz.

10 " " " without Table . Azides.
10 " " " with " . Azilistasy.

12 " " " without " . Azotus.
12 inch Index Centres, with Table
8 inch Single Dial Index Centres, Foot-stock with Bearing, without Table

Azzo.
8 inch single Dial Index Centres, Foot-stock with Bearing, with Table
8 inch Single Dial Inde x Centres, Foot-stock with Adjustable Centre, without Table .
8 inch Single Dial Index Centres, Foot-stock with Adjustable Centre, with Table

Azbazareth.
Azbuk.
Azglion.
Azekah. with Bearing, without Table . . .
12 inch Single Dial Index Centres, Foot-stock with Bearing, with Table

Azenstiles
12 inch Single Dial Index Centres, Foot-stock with Adjustable Centre, without Table
12 inch Single Dial Index Centres, Foot-stock with Adjustable Centre, with Table
No. 14 Triple Index Centres
Azezal.
A zetasl.
Azetmist.
No. 2 1-2 Triple Index Centres for Direct Indexing, only
No. 4 Triple Index Centres for Direct Indexing, only

Azetrain.
Azetruly.
rABLES FOR INDEX CENTRES.
For 8 inch Single Dial, 10 inch Plain and 10 inch Universal Azerbain.
For 12 inch Single Dial and 12 inch Plain . Azetas.
For 12 1-2 inch Uuiversal
Azeupats.
VISES.
Adjustable Swivel Vise for No. 2 Surface Grinding Machine Azgets. Plain Vises.

Flanged Vises. No. 1 Azgorunt. No. 2 Azgostut. No. 3 Azgoturni. No. 4 Azbamput.
Swivel Vises.
No. 2 A trialty.
No. 3 • . . \cdot. . Azhalpesty.
Tool Makers' Universal Vise, No. 2 . . Azhalquic.
Tool Makers' Universal Vise, No. 3 . . Azotus.
Improved Bench Centres, with Indicator - Azel.
Tmproved Bench Centres, without Indicator Azgad.

EET8 OF TOOLS FOR MILLING MACHINES.

PLAIN MILLING MACHINES.

PLAIN MILLING MACHINES-Continued

No. 5 with Power Vertical Feed, without Tools, without Pump
No. 5 with Power Vertical Feed, with Tools, without Pump

Bocgey.
No. 5 with Power Vertical Feed, without Tools, with Pump

Boccalina
Boduni.
No. 5 with Power Vertical Feed, with Tools, with Pump

Boethia.
No. 12 without Pump
No. 12 with "
No. 13 without Pump
No. 13 with
No. 13 with Compound Back Gears, without Pump
No. 13 with Compound Back Gears, with Puinp

Brayton.
Brazil.
Bruhl.
Brunck.
Brueys.
No. 13B, without Pump . . . : .
No. 13B, with "، $\dot{\square} \quad . \quad$.
No. 24, without Tools, without Pump: :
No. 24, with Tools, without Pump . . .
No. 24, without Tools, with Pump . . .
No. 24, with Tools, with Pump : . .
With Metric Screw. ${ }^{\text {Wed }}$. . . .
With Power Vertical Feed
With Hand Vertical Feed
Do you wish Hand or Powervertical Feed?
Brumoy.
Brunnley
Bruties.
Byron.
Byrrhus.
Byshe.
Byzenus.
Byza.
Bubastis.
Buchan.
Bucolica.

VERTICAL SPINDLE MILLING MACHINES.

No. 2, without Tools, without Circular Milling Attachment .

Cabades.
Cabbon.
Caballey.
Cabinda.
Cabirise.
Cabrera.

AyaIa.

Ayolent.
Caesar.
Carl.
Carmei.
Carnot.
Charles.

Soda Kettle, Round Top. Donald. soda Kertle:, Semi-Round Top . . . Duval.

PLAIN 8CREW MACBINES.
No. 8 Power Feed Edgar.
No. 3 without cll Pump Elbert.
No. 3 with " " Eldad.
No. 4 or 5 Power Feed Eldred.
No. 4 without Oll I'ump Ell.
No. f with " " Elijah.

No. δ without " " Enos.
No. 5 with " " Epli.
No. 6 without " " without Tools . . Eric.

No. 6 with Tooln, without Pump . . . Eugiton.
No. 6 with Tools, with l'ump Euhydri.

AUTOMATIC SCREW MACHINES.

SCREW SLOTTING ATTACHMENTS.

WIRE FEED SCREW MACHINES.

No. 0 without Tools, without Pump
Henlopen.
No.0 with " " " . Henke.
No. 0 without Tools, with Pump . . . Henniker.
No. 0 with
No. 1 without Tools, without Pump
Henriko.
Heraclea.
Hera.
IIeracleote.
Heralut.
Hercyna.
Hercens.
Herder.
Hereford.
No. 2 with Power Feed, without Tools, with-
out l'ump
Heriluss.
Hermesly.
No. 2 with Power Feed, without Tools, with Pump

Hermuse.
No. 2 with Power Feed, with Tools, with Pump

Hernicis.
No. 2 Power Feed Herodes.
No. 4 without Tools, without Pump . - Heroisly.
No. 4 with
Herveysal.
No. 4 without Tools, with Pump
No. 4 with
Three I'ulley Countershaft, for Wire Feed Screw Machines

Herzegov.
Hesione.
Hesychius

AUTOMATIC GEAR CUTTING MACHINES.

No. 3 to take work to $26^{\prime \prime}$ diameter.
Without Tools, without Pump . . Ircchus.
With Tools, without Pump . . . Iadeux.
Without Tools, with Pump . . . Ialmenus.
With Tools, with Pump Ialmfest.
No. 3 to take work to $36^{\prime \prime}$ diameter. . . Ialmgia.
Without Tools, without Pump
With Tools, without Pump . . . Ialmkut.
Without Tools, with Pump . . . Ialmley.
With Tools, with Pump Ialomex.
No. 4 to take work to $36^{\prime \prime}$ diameter.
Without Tools, without l'ump . . Iader.
With Tools, without Pump . . . Ialuset.
Without Tools, with Pump . . . Ialysus.
With Tools, with Pump Ialyuit.
No. 4 to take work to $48^{\prime \prime}$ diameter.
Without Tools, without Pump . . Ialyzria.
With Tools, without Pump . . . Ialvesop.
Without Tools, with Pump . . . Ialzeph.
With Tools, with Pump Ialzenemy.
No. 5 to take work to $48^{\prime \prime}$ diameter.
Without Tools, without Pump . . Imaxenus.
With Tools, without Pump . . . Iamteyles.
Without Tools, with Pump . . . Iinthea.
With Tuols, with Pump Iantisule.
No. 5 to take work to $60^{\prime \prime}$ diameter.
Without Tools, without Pump . . Ianumth.
With Tools, without Pump . . . Ianvety.
Without Tools, with Pump . . . Ianzertets.
With Tools, with Pump Ianzerley.
No. 6 to take work to $60^{\prime \prime}$ diameter.
Without Tools, without Pump . . Iaon.
With Tools, without Pump

- Iaontey.

Without Tools, with Pump Iapetus.
With Tools, with Pump Iapfult.
No. 6 to take work to $72^{\prime \prime}$ diameter.
Without Tools, without Pump . . Iapidia.
With Tools, without Pump . . . Iapkets.
Without Tools, with Pump . . . Iaptust.
With Tools, with Pump Iaptustet.
No. 13 without Tools, without Pump . . Iapis.
Without Tools, with Pump . . . Iapyclia.
With Tools, without Pump . . . Iapzex.
With Tools, with Pump Iapzhit.
Sets of Tools for automatic Gear Cutting Machines.
For Nos. 3 or 13 Iarchaset.
For No. 4 Iaxartes.
For No. 5 Iberia.
For No. 6 Ibrahim.

Internal Gear Cutting Attachments

For No. 3 Automatic Gear Cutting Machine Laonices.
For No. 4
For No. 5
For No. 6
" \quad "

Laophon.
Laos.
Laphaes.

No. 0 Auto. Turret Forming machine
Xumarkey No. 2 Auto. Tubret furming Machine

Xanina.
No. 00 Atto. Cutting.off Machine
Xumid.
No. 0 Aitumatic Cutting.off Machine
Xumidist. no. 1 automatic Cutting.off Machine

Xumets. Giningtone Trough with 8tone . . . Yalden.
Gbindstonk Trovar without Stone . . Yemen.
Ginidtone Thuing Device with 7" Roll Gifinditone Truing Device with 12" Roll

EURNACES.

No. 1, Iron Work fitted for erection
No. 1, Iron Work fitted for erection and special Thes
No. 1, Double, Iron Workfitted por erection
No. 1, Double, Iron Work fitted far erection and spectal Tlles
No. 2. Iron Work fitted for erection, Right liand
No. 2 Iron Work fitted for erection, Left Hand
No. 2, Iron Work fited for erection and Spectal Tlles, Right Hand
No. 2, Iron Work fitted for erection, and speclal Tiles, Left Hand
No. 2, Double, Iron Work fited for erection
No. 2, Double, Iron Work fitted for erection and Sperial Tiles

Yssel.
Yucatan.
Yuca.
Yudel.
Yost.
Yosemite.
Youth.
Youghal. Youats.

Youm.
No. 0 Small Ilardening, for Open Fire \quad.
No. 3. Iron Work fitted for erection, Right liand

Ypres.
Zara.
No. 3, 1ron Work fitted ior erection, Left Ifand
No. 3, Iron Work fitted for erection and Special Tiles, RIght Hand
No. 3, Iron Work fitted for erection and Special Tiles, Left Hand

Zantey.
Zebra.
Zebulun.
Zair.
Zainge.
Zero.
No. 4, Iron Work fitted for erection, Left Hand

Zeuxis.
No. 4, Iron Work fitted for erection and Special Tiles, Right Hand

Zodiac.
No.4, Iron Work fitted for erection and Special Tlles, Left Hand

Zophav.
Zethes.
Zohar.
WORKBENCH, patterns for Zone.
Workbench, Casting for, drilled ready for use

AMOUNTS IN DOLLARS.

To olbtain an approximately equivalent sum in Pounds Sterling, divide by five.
To obtain an approximately equivalent sum in Francs, multiply by five.

To obtain an approximately equivalent sum in Marks, multiply by four.

In many cases, two words may be combined as one. For example, "Lowmill" would mean 6500 dollars.

1000	- North.	100	-•	Bell.
2000	- East.	200	- .	Dan.
3000	. . . South.	300	.	Ken.
4000	- . . West.	400	-	Long.
5100	. . . High.	500	.	Mill. .
6000	. . . Low.	600	-	New
7000	. . Upper.	700	- .	Port.
8000	. . . Alder.	800	-	Ray.
9000	. . . Apple.	900		Rose.
10000	. - Box.	10		Brae.
1100	, . . Date.	20	.	Brook.
12000	. . . Elim.	30		Creek.
13000	. . . Fig.	40	-	Grade.
14000	- . . Fir.	50	-	Haven.
15000	. . . Hop.	60	. .	More.
16000	. . - Holly.	70	.	Town.
17000	- . I Ivy.	80		Vale.
18000	. . . Lemon.	90	.	Wick.
190.10	- . Maple.	1	-	Fay.
20010	. . Oak.	2	.	Hat.
21000	. . Palm.	3	-	Inn.
22000	Peach.	4		Jet.
23000	. . Pear.	5		Led.
24000	. . . Pine.	6	.	Sty.
25000	- Pink.	7	.	Urn.
30000	. . . Plum.	8	. .	Vex.
40000	- . - Vine.	9	- .	Wry.

WEIGHTS.

These same words can be used to indicate the weights of machines by writing the letter z at the end of each wrord or compound word.

For example, " Westbellz" would mean 4100 pounde.

TABLE OF DATES.

We publish the following table by permission of Messes. E. A. Adams \& Co., Boston, Mass., New England Agents of the Red Star Line of Steamers. For example, "Armsberg would mean first of January.

BEGINNING FOR THE DAY.
First Arms.
Second Aron.
Third. Ash.
Fourth Attle.
Fifth Baron.
sixth Beach.
Seventh Bloom.
Eighth Brown.
Ninth Biro.
Tenth Clark.
Eleventh . . . Clay.
Twelfth Cake.
Thirteenth . . . Cole.
Fourteenth . . Dress.
Fifteenth . . . Devon.
Sixteenth . . . Dun.
Seventeenth . . Eden.
Eighteenth . . Elvin.
Nineteenth . . Eton.
Twentieth . . . Fair.
Twenty-first . . Glen.
Twenty-second . Green.
Twenty-third . Hazel.
Twenty-fourth . Lees.
Twenty-fifth . . Lynn.
Twenty-sixth . Olden.
Twenty-seventh Oster.
Twenty-eighth . Pitts.
Twenty-ninth . Plain.
Thirtieth . . . Raven.
Thirty-first . . Rock.

ENDING		
FOR THE		
MONTH.		MONTH.
Berg . . . January.		
Bor . . . February.		
Dore . . . March.		
Dale . . . April.		
Field . . May.		
Ford . . . June.		
Ham . . . July.		
Mont . . . August.		
Shire . . . September.		
Ton . . . October.		
File . . . November.		
Wood . . December.		

Digitized by COO

[^0]: "The present fixture overcomes these difficulties. It consists, primarily, of a grinding spindle of comparatively amall size, mounted in a bearing of telescopic tubes of enficiently large diameter, to give the required rigidity. These tubes are adjustable, longitudinally relatively to each other, and furnish a support or bearing for the epindle in close proximity to the grinding wheel. The manl diameter of the spindie enables it to be run at the required high speeds.

[^1]: For Arbors, Bushings and Collets, see pages 134, 13i5.

[^2]: When ordering, give diameter of holes in turret.

[^3]: Price includes boxing and delivery f. o. b., Providence, R. I.
 Case Hardening and Annealing Furnaees can be furnished with ovens from

 - feet 3 inches to 10 feet deep. Prices on application.

 In ordering Single Furnaces please state whether right or left-hand are requiped
 Prices do not include erecting. We will furnish a competent man it de
 Special circular mailed upon application.

[^4]: In ordering, state whether Right or Left Hand Cutters are wanted.

 Other sizes made to order.
 List of Arbors for use with the above Cutters shown on re 52.

[^5]: *In ordering give construction number of machine.

[^6]: Eight Cutters made for each pitch; see page 262. KEEP CUTTERS SHARP.

[^7]: (:utters marked * are not kept in stock, but are mitle to orde

[^8]: * Price includes box with cover. \dagger Price includes cover only. \ddagger Made to order onlv, Price upon application.

[^9]: A Standard Gauge, to be used in adjusting sent with each of the above.

[^10]: A set of Standards, used in adjusting the Caliper, is sent with each of the above unless otherwise ordered.

[^11]: The $2^{\prime \prime}$ and $3^{\prime \prime}$ are divided to 16ths and 64 ths of an inch on one side and 32 nds and 64ths on the other.

 The $4^{\prime \prime}, 6^{\prime \prime}, 8^{\prime \prime}$ and $10^{\prime \prime}$ are divided on both sides to 16 ths and 32 nds of an inch.

